Skip to main content Accessibility help
×
Home

Reverse Monte Carlo structural model for a zirconium-based metallic glass incorporating fluctuation microscopy medium-range order data

  • Jinwoo Hwang (a1), Anna M. Clausen, Hongbo Cao and Paul M. Voyles (a1)

Abstract

We used reverse Monte Carlo (RMC) modeling to simulate the atomic structure of a Zr-based bulk metallic glass (BMG), incorporating short-range structural data from the electron diffraction total reduced density function G(r) and medium-range structural data from fluctuation electron microscopy (FEM). Including the FEM data created within the model loosely ordered planar atomic arrangements covering regions ∼1 nm in diameter without degrading the agreement with G(r). RMC refinement against only G(r) produced no agreement with FEM. Improved simulations are needed to create fully realistic BMG structures, but these results show that including FEM in RMC further constrains the structure compared with G(r) data alone and that the FEM signal in real materials is likely to arise from pseudo-planar arrangements of atoms.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jhwang3@wisc.edu

References

Hide All
1.Slipenyuk, A. and Eckert, J.: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55 Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004).
2.Fan, P.K. Cang, Liaw, T.W., Wilson, W., Dmowski, W., Choo, H., Liu, C.T., Richardson, J.W., and Th. Proffen: Structural model for bulk amorphous alloys. Appl. Phys. Lett. 89, 111905 (2006).
3.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).
4.Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).
5.Schuh, A.C., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
6.Adam, G. and Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).
7.Kivelson, D., Kivelson, S.A., Zhao, X.L., Nussinov, Z., and Tarjus, G.: A thermodynamic theory of supercooled liquids. Physica A 219, 27 (1995).
8.Sheng, H.W., Luo, W.K., Alamgir, F.M., Mai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).
9.Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D.M.: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).
10.Lee, G.W., Gangopadhyay, A.K., Kelton, K.F., Hyers, R.W., Rathz, T.J., Rogers, J.R., and Robinson, D.S.: Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).
11.Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).
12.Fischer, H.E., Barnes, A.C., and Salmon, P.S.: Neutron and x-ray diffraction studies of liquids and glasses. Rep. Prog. Phys. 69, 233 (2006).
13.Hafner, J., Egami, T., Aur, S., and Giessen, B.C.: The structure of calcium-aluminium glasses: X-ray diffraction and computer simulation studies. J. Phys. F: Met. Phys. 17, 1807 (1987).
14.Takagi, T., Okubo, T., Hirotsu, Y., Murty, B.S., Hono, K., and Shindo, D.: Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79, 485 (2001).
15.Sheng, H.W., Liu, H.Z., Cheng, Y.Q., Wen, J., Lee, P.L., Luo, W.K., Shastri, S.D., and Ma, E.: Polyamorphism in a metallic glass. Nat. Mater. 6, 192 (2007).
16.Voyles, P.M. and Abelson, J.R.: Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Sol. Energy Mater. Sol. Cells 78, 85 (2003).
17.Rehr, J.J. and Albers, R.C.: Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000).
18.Waseda, Y.: Anomalous X-Ray Scattering for Materials Characterization (Springer, Berlin, 2002).
19.Elliot, S.R.: Medium-range structural order in covalent amorphous solids. Nature 354, 445 (1991).
20.Gaskell, P.H. and Wallis, D.J.: Medium-range order in silica, the canonical network glass. Phys. Rev. Lett. 76, 66 (1996).
21.Ma, D., Stoica, A.D., and Wang, X-L.: Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30 (2009).
22.Murty, B.S. and Hono, K.: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng., A 312, 253 (2001).
23.Hirata, A., Hirotsu, Y., Nieh, T.G., Ohkubo, T., and Tanaka, N.: Direct imaging of local atomic ordering in a Pd–Ni–P bulk metallic glass using Cs-corrected transmission electron microscopy. Ultramicroscopy 107, 116 (2007).
24.Treacy, M.M.J., Gibson, J.M., Fan, L., Paterson, D.J., and McNulty, I.: Fluctuation microscopy: A probe of medium range order. Rep. Prog. Phys. 68, 2899 (2005).
25.Gibson, J.M., Treacy, M.M.J., and Voyles, P.M.: Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83, 169 (2000).
26.Hwang, J., Cao, H., and Voyles, P.M.: Nanometer-scale structural relaxation in Zr-based bulk metallic glass. Mater. Res. Soc. Symp. Proc. 1048, Z05–04 (2008).
27.Hufnagel, T.C., Fan, C., Ott, R.T., Li, J., and Brennan, S.: Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics 10, 1163 (2002).
28.Sordelet, D.J., Ott, R.T., Li, M.Z., Wang, S.Y., Wang, C.Z., Besser, M.F., Liu, A.C.Y., and Kramer, M.J.: Structure of Zrx Pt100-x (73 ≤x ≤77) metallic glasses. Metall. Mater. Trans. A 39, 1908 (2008).
29.Wen, J., Cheng, Y.Q., Wang, J.Q., and Ma, E.: Distinguishing medium-range order in metallic glass using fluctuation electron microscopy: A theoretical study using atomic models. J. Appl. Phys. 105, 043519 (2009).
30.Stratton, W.G., Hamann, J., Perepezko, J.H., Mao, X., Khare, S.V., and Voyles, P.M.: Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Appl. Phys. Lett. 86, 141910 (2005).
31.Voyles, P.M., Zotov, N., Nakhmanson, S.M., Drabold, D.A., Gibson, J.M., Treacy, M.M.J., and Keblinski, P.: Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J. Appl. Phys. 90, 9 (2001).
32.Keen, D.A. and Mcgreevy, R.L.: Structural modelling of glasses using reverse Monte Carlo simulation. Nature 344, 423 (1990).
33.McGreevy, R.L.: Reverse Monte Carlo modeling. J. Phys. Condens. Matter 13, R877 (2001).
34.Biswas, P., Atta-Fynn, R., and Drabold, D.A.: Reverse Monte Carlo modeling of amorphous silicon. Phys. Rev. B 69, 195207 (2004).
35.Biswas, P., Tafen, D.N., Atta-Fynn, R., and Drabold, D.: The inclusion of experimental information in first principles modelling of materials. J. Phys. Condens. Matter 16, S5173 (2004).
36.Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system: A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 2969 (2005).
37.Chen, H. and Zuo, J-M.: Structure and phase separation of Ag–Cu alloy thin films. Acta Mater. 55, 1617 (2007).
38.Kirkland, E.J.: Advanced Computing in Electron Microscopy (Plenum, NY, 1998).
39.Cockayne, D.J.H. and Mckenzie, D.R.: Electron diffraction analysis of polycrystalline and amorphous thin films. Acta Crystallogr., Sect. A 44, 870 (1988).
40.Voyles, P.M.: Fluctuation Electron Microscopy of Medium-Range Order in Amorphous Silicon (Dissertation, University of Illinois at Urbana-Champaign, 2001).
41.Puthoff, J. and Stone, D.S.: Unpublished data.
42.Miracle, D.B.: The efficient cluster packing model: An atomic structural model for metallic glasses. Acta Mater. 54, 4317 (2006).
43.Hall, L.E. and Mckenzie, D.R.: Coordination number determination in binary alloys using electron diffraction. Philos. Mag. A 80, 525 (2000).
44.Dash, R.K., Voyles, P.M., Gibson, J.M., Treacy, M.M.J., and Keblinski, P.: A quantitative measure of medium-range order in amorphous materials from transmission electron micrographs. J. Phys. Condens. Matter 15, S2425 (2003).
45.Voyles, P.M. and Muller, D.A.: Fluctuation microscopy in the STEM. Ultramicroscopy 93, 147 (2002).
46.Stratton, W.G. and Voyles, P.M.: Comparison of fluctuation electron microscopy theories and experimental methods. J. Phys. Condens. Matter 19, 455203 (2007).
47.Freeman, L.A., Howie, A., Mistry, A.B., and Gaskell, P.H.: The Structure of Non-Crystallized Materials (Taylor and Francis, London, UK, 1976).
48.Stratton, W.G. and Voyles, P.M.: A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727 (2008).
47.Freeman, L.A., Howie, A., Mistry, A.B., and Gaskell, P.H.: The Structure of Non-Crystallized Materials (Taylor and Francis, London, UK, 1976).
48.Stratton, W.G. and Voyles, P.M.: A phenomenological model of fluctuation electron microscopy for a nanocrystal/amorphous composite. Ultramicroscopy 108, 727 (2008).
49.Opletal, G., Petersen, T.C., McCulloch, D.G., Snook, I.K., and Yarovsky, I.: The structure of disordered carbon solids studies using a hybrid reverse Monte Carlo algorithm. J. Phys. Condens. Matter 17, 2605 (2005).
50.Zhao, G., Buseck, P.R., A. Rougée, and Treacy, M.M.J.: Mediumrange order in molecular materials: Fluctuation electron microscopy for detecting fullerenes in disordered carbons. Ultramicroscopy 109, 177 (2009).
51.Suzuki, Y., Haimovich, J., and Egami, T.: Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction. Phys. Rev. B 35, 2162 (1987).
52.Mendelev, M.I., Sordelet, D.J., and Kramer, M.J.: Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses. J. Appl. Phys. 102, 043501 (2007).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed