Skip to main content Accessibility help

Revealing the mechanical properties of potassium dihydrogen phosphate crystals by nanoindentation

  • Y. Zhang (a1), L.C. Zhang (a2), M. Liu (a2), F.H. Zhang (a3), K. Mylvaganam (a4) and W.D. Liu (a4)...


Potassium dihydrogen phosphate (KDP) is an important nonlinear optical crystal material for light frequency converters and Pockels photoelectric switches in laser systems. However, KDP is apt to fracture, is deliquescent, and can suffer from microstructural changes under a temperature variation. As such, KDP has been one of the most difficult-to-handle materials, but its properties have not been well understood. This paper aims to explore the mechanical properties of KDP crystals in detail with the aid of the nanoindentation technique using a Berkovich diamond indenter. It was found that the mechanical properties of KDP can be easily altered by machining-induced subsurface damage. It was also discovered that a KDP crystal is a visco-elasto-plastic material during micro/nanoscale deformation, although it is very brittle macroscopically.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Lines, M.E. and Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials (Clarendon press, Oxford, 2001).
2. Blinc, R. and Zeks, B.: Soft Modes in Ferroelectrics and Anti-Ferroelectrics (North-Holland Pub. Co., Amsterdam, 1974).
3. Yoreo, J.J.D., Burnham, A.K., and Whitman, P.K.: Developing KH2PO4 and KD2PO4 crystals for the world's most power laser. Int. Mater. Rev. 47, 113152 (2002).
4. Fedder, R.A.H., Geraghty, P., and Locke, S.N.: NIF pockels cell and frequency conversion crystals. In Lasers and Applications in Science and Engineering, Lane, Monya A. and Wuest, Craig R., eds. (International Society for Optics and Photonics: Bellingham, 2004); pp. 121126.
5. Salo, V.I., VAtroschenko, L., Garnov, S.V., and Khodeyeva, N.V.: Structure, impurity composition and laser damage threshold of the subsurface layers in KDP and KD*P single crystals. Proc. SPIE 2714, 197201 (1996).
6. Feit, M.D. and Rubenchik, A.M.: Influence of subsurface cracks on laser-induced surface damage. In XXXV Annual Symposium on Optical Materials for High Power Lasers: Boulder Damage Symposium, International Society for Optics and Photonics: 2004; pp. 264272.
7. House, R., Bettis, J.R., and Guenther, A.H.: Subsurface structure and laser damage threshold. IEEE J. Quantum Electron. 13, 363364 (1977).
8. Peng, J., Zhang, L.C., and Lu, X.C.: Elastic-plastic deformation of KDP crystals under nanoindentation. Mater. Sci. Forum 773–774, 705711 (2014).
9. Endert, H. and Melle, W.: Influence of dislocations in KDP crystals on laser damage threshold. Cryst. Res. Technol. 16, 815819 (1981).
10. Anbukumar, S., Vasudevan, S., and Ramasamy, P.: Hardness anisotropy of ADP crystals. Indian J. Phys. 61A, 397405 (1987).
11. Fang, T. and Lambropoulos, J.C.: Microhardness and indentation facture of potassium dihydrogen phosphate (KDP). J. Am. Ceram. Soc. 85, 174178 (2002).
12. Rao, K.K. and Sirdeshmukh, D.B.: Microhardness of some crystals with potassium dihydrogen phosphate structure. Indian J. Pure Appl. Phys. 16, 860861 (1978).
13. Shaskol'skaya, M.P., Hai-kuin, C., and Katrich, M.D.: Mechanical-properties and plastic-deformation of KDP, DKDP, ADP, and RDP crystals. Inorg. Mater. 14, 558561 (1978).
14. Wang, H.X., Wang, J.H., and Dong, S.: Nanoindentation size effect of KDP crystal by instrumented indentation testing. Key Eng. Mater. 364, 188192 (2008).
15. Lu, C.P., Gao, H., Wang, J.H., Teng, X.J., and Wang, B.L.: Mechanical properties of potassium dihydrogen phosphate single crystal by the nanoindentation technique. Mater. Manuf. Processes 25, 740748 (2010).
16. Wang, J.H., Chen, M.J., Dong, S., Wang, H.X., Zhang, J.H., and Zong, W.J.: Critical cutting condition for brittle-ductile transition of KDP crystals in ultra-precision machining. Key Eng. Mater. 329, 409414 (2007).
17. Kucheyev, S.O., Siekhaus, W.J., Land, T.A., and Demos, S.G.: Mechanical response KD2XH2(1−X)PO4 crystals during nanoindentation. Appl. Phys. Lett. 84, 22742276 (2004).
18. Guin, C.H., Katrich, M.D., Savinkov, A.I., and Shaskol'skaya, M.P.: Plastic strain and dislocation structure of the KDP Group crystals. Krist. Tech. 15, 479488 (1980).
19. Fu, Y.J., Gao, Z.S., Sun, X., Wang, S.L., Li, Y.P., Zeng, H., Luo, J.P., Duan, A.D., and Wang, J.Y.: Effects of anions on rapid growth and growth habit of KDP crystals. Prog. Cryst. Growth Charact. Mater. 40, 211220 (2000).
20. Bei, H., George, E.P., Hay, J.L., and Pharr, G.M.: Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95, 045501 (2005).
21. Kim, J.Y., Kang, S.K., and Lee, J.J.: Influence of surface-roughness on indentation size effect. Acta Mater. 35, 35553563 (2005).
22. Kiely, J.D., Hwang, R.Q., and Houston, J.E.: Effect of surface steps on the plastic threshold in nanoindentation. Phys. Rev. Lett. 81, 44244427 (1998).
23. Goken, M. and Kempf, M.: Pop-ins in nanoindentations—The initial yield point. Z. Metallkunde 92, 10611067 (2001).
24. Wang, Z.G., Bei, H., George, E.P., and Pharr, G.M.: Influences of surface preparation on nanoindentation pop-in in single-crystal Mo. Scr. Mater. 65, 469472 (2011).
25. Wu, D.J., Chao, X.S., Wang, Q.G., Wang, B., Gao, H., and Kang, R.K.: Damage detection and analysis of machined KDP crystal subsurface. Opt. Precis. Eng. 15, 17221726 (2007).
26. Liu, C., Liua, P., Zhao, Z.B., and Northwood, D.O.: Room temperature creep of a high strength steel. Mater. Des. 22, 325328 (2001).
27. Yang, S., Zhang, Y.W., and Zeng, K.Y.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 36553667 (2004).
28. González-Doncell, G. and Sherby, O.D.: High temperature creep behavior of metal matrix aluminum-SiC composites. Acta Metall. Mater. 41, 27972805 (1993).
29. Wang, S.H. and Chen, W.X.: Room temperature creep deformation and its effect on yielding behavior of a line pipe steel with discontinuous yielding. Mater. Sci. Eng., A 301, 147153 (2001).
30. Li, W.B., Henshall, J.L., Hooper, R.M., and Easterling, K.E.: The mechanisms of indentation creep. Acta Metall. Mater. 39, 30993110 (1991).
31. Alden, T.H.: Theory of mobile dislocation density: Application to the deformation of 304 stainless steel. Metall. Trans. A 18, 5162 (1987).
32. Wang, S.H., Zhang, Y.G., and Chen, W.X.: Room temperature creep and strain-rate-dependent stress-strain behavior of pipeline steels. J. Mater. Sci. 36, 19311938 (2001).
33. Mylvaganam, K., Zhang, L.C., and Zhang, Y.: Stress-induced phase and structural changes in KDP crystals. Comput. Mater. Sci. 109, 359366 (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed