Skip to main content Accessibility help
×
Home

Response analysis on AlGaN metal–semiconductor–metal photodetectors in a perspective of experiment and theory and the persistent photoconductivity effect

  • Yiming Zhao (a1) and William R. Donaldson (a1)

Abstract

Aluminum gallium nitride (AlGaN) metal–semiconductor–metal photodetectors were successfully fabricated with different contact materials and structures and were tested with ultrafast lasers. The experimental results were compared with the finite element simulations based on APSYS and showed consistent trend with respect to the device IV properties and response behaviors. Persistent photoconductivity (PPC) was observed for devices with both gold and aluminum contacts and various structures, and the decay time can be longer than 10 ms. The response time and responsivity were found to be affected by the bias voltage, operating temperature, and incident power. The mechanism behind the long decay time is analyzed from the perspective of the materials properties and factors influencing the decay time are examined. The nature of the metal–semiconductor contact is studied to help understand the PPC effect, and the contact showed ohmic-like behavior.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: zhao@lle.rochester.edu

References

Hide All
1.Carrano, J.C., Li, T., Brown, D.L., Grudowski, P.A., Eiting, C.J., Dupuis, R.D., and Campbell, J.C.: Very high-speed metal–semiconductor–metal ultraviolet photodetectors fabricated on GaN. Appl. Phys. Lett. 73, 24052407 (1998).
2.Walker, D., Monroy, E., Kung, P., Wu, J., Hamilton, M., Sánchez, E.J., Diaz, J., and Razeghi, M.: High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN. Appl. Phys. Lett. 74, 762764 (1999).
3.Ferguson, I., Tran, C.A., Karlicek, R.F. Jr., Feng, Z.C., Stall, R., Liang, S., Lu, Y., and Joseph, C.: GaN and AlGaN metal–semiconductor–metal photodetectors. Mater. Sci. Eng., B 50, 311314 (1997).
4.Monroy, E., Calle, F., Muñoz, E., and Omnès, F.: Algan metal–semiconductor–metal photodiodes. Appl. Phys. Lett. 74, 34013403 (1999).
5.Hou, M., So, H., Suria, A.J., Yalamarthy, A.S., and Senesky, D.G.: Suppression of persistent photoconductivity in AlGaN/GaN ultraviolet photodetectors using in situ heating. IEEE Electron Device Lett. 38, 5659 (2016).
6.Hirsch, M.T., Wolk, J.A., Walukiewicz, W., and Haller, E.E.: Persistent photoconductivity in n-type GaN. Appl. Phys. Lett. 71, 10981100 (1997).
7.Chen, H.M., Chen, Y.F., Lee, M.C., and Feng, M.S.: Persistent photoconductivity in n-type GaN. J. Appl. Phys. 82, 899901 (1997).
8.Qiu, C.H. and Pankove, J.I.: Deep levels and persistent photoconductivity in GaN thin films. Appl. Phys. Lett. 70, 19831985 (1997).
9.Li, J.Z., Lin, J.Y., Jiang, H.X., Asif Khan, M., and Chen, Q.: Persistent photoconductivity in a two-dimensional electron gas system formed by an AlGaN/GaN heterostructure. J. Appl. Phys. 82, 12271230 (1997).
10.Zhao, Y. and Donaldson, W.R.: Systematic study on aluminum composition nonuniformity in aluminum gallium nitride metal–semiconductor–metal photodetectors. IEEE Trans. Electron. Dev. (2018).
11.Wohlmuth, W.A., Arafa, M., Mahajan, A., Fay, P., and Adesida, I.: InGaAs metal–semiconductor–metal photodetectors with engineered Schottky barrier heights. Appl. Phys. Lett. 69, 35783580 (1996).
12.Shockley, W. and Prim, R.C.: Space-charge limited emission in semiconductors. Phys. Rev. 90, 753758 (1953).
13.Barker, A.S. Jr. and Ilegems, M.: Infrared lattice vibrations and free-electron dispersion in GaN. Phys. Rev. B 7, 743750 (1973).
14.Bogusławski, P., Briggs, E.L., and Bernholc, J.: Native defects in gallium nitride. Phys. Rev. B 51, 1725517258 (1995).
15.Donaldson, W.R.: Optical probes for the characterization of surface breakdown. Proc. SPIE 871, 157164 (1988).
16.Li, J., Xu, Y., Hsiang, T.Y., and Donaldson, W.R.: Picosecond response of gallium-nitride metal–semiconductor–metal photodetectors. Appl. Phys. Lett. 84, 20912093 (2004).
17.Li, J.: Ultrafast metal–semiconductor–metal UV photodetectors on GaN. Ph.D. thesis, University of Rochester, New York, 2004.
18.Monroy, E., Calle, F., Pau, J.L., Muñoz, E., Omnès, F., Beaumont, B., and Gibart, P.: AlGaN-based UV photodetectors. J. Cryst. Growth 230, 537543 (2001).
19.Carbone, A. and Mazzetti, P.: Grain-boundary effects on photocurrent fluctuations in polycrystalline photoconductors. Phys. Rev. B 57, 24542460 (1998).
20.Ursaki, V.V., Tiginyanu, I.M., Ricci, P.C., Anedda, A., Hubbard, S., and Pavlidis, D.: Persistent photoconductivity and optical quenching of photocurrent in GaN layers under dual excitation. J. Appl. Phys. 94, 38753882 (2003).
21.Li, J., Zhao, M., and Wang, X.F.: High performance Schottky UV photodetectors based on epitaxial AlGaN thin film. Phys. B 405, 996998 (2010).
22.Sze, S.M.: Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981); ch. 5, p. 307.
23.Espevik, S., Wu, C., and Bube, R.H.: Mechanism of photoconductivity in chemically deposited lead sulfide layers. J. Appl. Phys. 42, 35133529 (1971).
24.Park, C.H. and Chadi, D.J.: Stability of deep donor and acceptor centers in GaN, AlN, and BN. Phys. Rev. B 55, 1299513001 (1997).
25.Katz, O., Garber, V., Meyler, B., Bahir, G., and Salzman, J.: Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 79, 14171419 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed