Skip to main content Accessibility help
×
Home

Resistivity–temperature behavior of dilute Cu(Ir) and Cu(W) alloy films

  • K. Barmak (a1), C. Cabral (a2), A.J. Kellock (a3) and J.M.E. Harper (a4)

Abstract

The resistivities of as-deposited Cu(4.2Ir), Cu(2.0W), and Cu(2.2W) films are 32.2, 25.4, and 28.0 μΩcm, respectively. These resistivities are significantly higher thanthat for pure Cu films. After annealing the Cu(4.2Ir) film at constant heating rate to 800 °C and the two Cu(W) films to 950 °C, the resistivities reduce to 28.4, 4.3, and 5.2 μΩcm, respectively. The smaller reduction in resistivity for Cu(4.2Ir) compared with that for Cu(W) is partly a consequence of solute redissolution following precipitation. The variation of resistivity with temperature for the films and the Cu-rich end of the binary phase diagrams are used to categorize the decomposition behavior of the Cu(Ir) and Cu(W). These categories were defined by K. Barmak et al., J. Appl. Phys.87, 2204 (2000). W is placed in category III along with V, Nb, Ta, Cr, Mo, Re, Ru, Os, B, and C. Ir most suitably belongs to Category II together with Fe and Co.

Copyright

Corresponding author

a)Address all correspondence to this author.e-mail: katayun@andrew.cmu.edu

References

Hide All
1.Barmak, K., Lucadamo, G.A., Cabral, C. Jr., Lavoie, C. and Harper, J.M.E.: Dissociation of dilute immiscible copper alloy thin films. J. Appl. Phys. 87, 2204 (2000).
2.Harper, J.M.E., Gupta, J., Smith, D.A., Chang, J.W., Holloway, K.L., Cabral, C. Jr., Tracy, D.P. and Knorr, D.B.: Crystallographic texture change during abnormal grain growth in Cu–Co thin films. Appl. Phys. Lett. 65, 177 (1994).
3.Zhang, S-L., Harper, J.M.E., Cabral, C. Jr., and d’Heurle, F.M.: In situ resistivity study of copper-cobalt films: precipitation, dissolution and phase transformation. Thin Solid Films 401, 298 (2001).
4.Zhang, S-L., Harper, J.M.E. and d’Heurle, F.M.: High conductivity copper-boron alloys obtained by low temperature annealing. J. Electron. Mater. 30, L1 (2001).
5.Barmak, K., Gungor, A., Cabral, C. Jr., and Harper, J.M.E.: Annealing behavior of Cu and dilute Cu-alloy thin films: Precipitation, grain growth and resistivity. J. Appl. Phys. 94, 1605 (2003).
6.Binary Alloy Phase Diagrams, edited by Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L., (ASM International, Metals Park, OH, 1990).
7.Barmak, K., Gungor, A., Rollett, A.D., Cabral, C. Jr., and Harper, J.M.E.: Texture of Cu and dilute binary Cu-alloy films: Impact of annealing and solute content. Mater. Sci. Semicond. Proc. 6, 175 (2003).
8.Gungor, A., Barmak, K., Rollett, A.D., Cabral, C. Jr., and Harper, J.M.E.: Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir) and Cu(W) alloy thin films. J. Vac. Sci. Technol. B 20, 2314 (2002).
9.Gungor, A.: Cu and Cu-alloy thin films: Evolution of resistivity and microstructure. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA (2002).
10.Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 17021706(1957).
11.Butrymowicz, D.B., Manning, J.R. and Read, M.E.: International Copper Research Association Monograph V. The Metallurgy of Copper. Diffusion Rate Data and Mass Transport Phenomena for Copper Systems (National Bureau of Standards, Washington, DC, 1977).
12.Butrymowicz, D.B., Manning, J.R. and Read, M.E.: International Copper Research Association Monograph VIII. The Metallurgy of Copper. Diffusion Rate Data and Mass Transport Phenomena for Copper Systems (National Bureau of Standards, Washington, DC, 1981).

Keywords

Resistivity–temperature behavior of dilute Cu(Ir) and Cu(W) alloy films

  • K. Barmak (a1), C. Cabral (a2), A.J. Kellock (a3) and J.M.E. Harper (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed