Skip to main content Accessibility help
×
Home

Resistance degradation behavior of Zr-doped BaTiO3 ceramics and multilayer ceramic capacitor

  • Seok-Hyun Yoon (a1), Jeong-Ryeol Kim (a1), Sun-Ho Yoon (a1), Chang-Hoon Kim (a1) and Doo-Young Kim (a1)...

Abstract

Resistance degradation of zirconium (Zr)-doped barium titanate (BaTiO3) was investigated. A series of Ba(Ti1−yZry)O3 powders and coarse-grained ceramics ranging y from 0 to 0.1 were prepared. The increase of Zr concentration systematically increased the time to as well as electric field to degradation. Such behaviors directly corresponded to those of ionic conduction contribution as evaluated by the Warburg impedance. The magnitude of Warburg impedance decreased with the increase of Zr concentration, which demonstrates that the Zr incorporation inhibits the ionic conduction caused by oxygen vacancies. The prototype multilayer ceramic capacitor (MLCC) samples were also prepared by applying these Ba(Ti1−yZry)O3 base powders and formulated X5R additives of commercial application. In this case, however, such distinct difference in degradation behavior with the variation of Zr concentration did not appear. It is supposed that the influence of additives far outweighs the effect of relative difference in the ionic conduction of Ba(Ti1−yZry)O3 under the MLCC test condition where the applied electric field strength is much higher than those for the coarse-grained bulk ceramics. Resistance degradation of MLCC under such high field might not be explained by only oxygen vacancy-related behavior alone.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: seokhyun72.yoon@samsung.com

References

Hide All
1.Hennings, D.F.K.: Dielectric materials sintering in reducing atmospheres. J. Eur. Ceram. Soc. 21, 1637 (2001).
2.Kishi, H., Mizuno, Y., and Chazono, H.: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42(1), 115 (2003).
3.Tsur, Y., Dunbar, T.D., and Randall, C.A.: Crystal and defect chemistry of rare earth cations in BaTiO3. J. Electroceram. 7, 25 (2001).
4.Randall, C.A.: Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J. Ceram. Soc. Jpn. 109, S2 (2001).
5.Kishi, H., Kohzu, N., Mizuno, Y., Iguchi, Y., Sugino, J., Ohsato, H., and Okuda, T.: Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3. Jpn. J. Appl. Phys. 38(9B), 5452 (1999).
6.Sakabe, Y., Hamaji, Y., Sano, H., and Wada, N.: Effects of rare-earth-oxides on the reliability of X7R dielectrics. Jpn. J. Appl. Phys. 41(9), 5668 (2002).
7.Waser, R., Baiatu, T., and Härdtl, K.H.: Dc electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73, 1645 (1990).
8.Waser, R., Baiatu, T., and Härdtl, K.H.: Dc electrical degradation of perovskite-type titanates: II, single crystals. J. Am. Ceram. Soc. 73, 1654 (1990).
9.Baiatu, T., Waser, R., and Härdtl, K.H.: Dc electrical degradation of perovskite-type titanates: III, a model of the mechanism. J. Am. Ceram. Soc. 73, 1663 (1990).
10.Vollmann, M. and Waser, R.: Grain boundary defect chemistry of acceptor-doped titanates: High field effects. J. Electroceram. 1, 51 (1997).
11.Rodwald, S., Fleig, J., and Maier, J.: Resistance degradation of iron-doped srontium titanate investigated by spatially resolved conductivity measurements. J. Am. Ceram. Soc. 83, 1969 (2000).
12.Yang, G.Y., Dickey, E.C., Randall, C.A., Randall, M.S., and Mann, L.A.: Modulated and ordered defect structures in electrically degraded Ni/BaTiO3 multilayer ceramic capacitors. J. Appl. Phys. 94, 5990 (2003).
13.Yang, G.Y., Lian, G.D., Dickey, E.C., Randall, C.A., Barber, D.E., Pinceloup, P., Henderson, M.A., Hill, R.A., Beeson, J.J., and Skamser, D.J.: Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II–insulation resistance degradation under applied dc bias. J. Appl. Phys. 96, 7500 (2004).
14.Yoon, S.H., Hong, M.H., Hong, H.O., Kim, Y.T., and Hur, K.H.: Effect of acceptor (Mg) concentration on the electrical resistance at room and high (200°C) temperatures of acceptor (Mg)-doped BaTiO3 ceramics. J. Appl. Phys. 102, 054105 (2007).
15.Yoon, S.H., Park, Y.S., Hong, J.O., and Sinn, D.S.: Effect of the pyrochlore (Y2Ti2O7) phase on the resistance degradation in yttrium-doped BaTiO3 ceramic capacitors. J. Mater. Res. 22, 2539 (2007).
16.Yoon, S.H., Randall, C.A., and Hur, K.H.: Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: I, impedance analysis. J. Am. Ceram. Soc. 92, 1758 (2009).
17.Yoon, S.H., Randall, C.A., and Hur, K.H.: Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: Ii, thermally stimulated depolarization current (TSDC) analysis. J. Am. Ceram. Soc. 92, 1766 (2009).
18.Yoon, S.H., Randall, C.A., and Hur, K.H.: Influence of grain size on impedance spectra and resistance degradation behavior in acceptor (Mg)-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2944 (2009).
19.Yoon, S.H., Randall, C.A., and Hur, K.H.: Correlation between resistance degradation and thermally stimulated depolarization current (TSDC) in acceptor (Mg)-doped BaTiO3 sub-micron fine-grain ceramics. J. Am. Ceram. Soc. 93, 1950 (2010).
20.Liu, W., Yang, G.Y., and Randall, C.A.: Evidence for increased polaron conduction near the cathodic interface in the final states of electrical degradation in SrTiO3 crystals. Jpn. J. Appl. Phys. 48, 051404 (2009).
21.Waser, R. and Hagenbeck, R.: Grain boundaries in dielectrics and mixed-conducting ceramics. Acta Mater. 48, 797 (2000).
22.Morita, K., Mizuno, Y., Chazono, H., Kishi, H., Yang, G.Y., Liu, W.E., Dicky, E.C., and Randall, C.A.: Electrical conduction of thin-layer Ni-multilayer ceramic capacitors with core-shell structure BaTiO3. Jpn. J. Appl. Phys. 46(5A), 2984 (2007).
23.Rödel, J. and Tomandl, G.: Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field. J. Mater. Sci. 19, 3515 (1984).
24.Sakabe, Y., Wada, N., Hiramatsu, T., and Tonogaki, T.: Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO. Jpn. J. Appl. Phys. 41(5A), 6922 (2002).
25.Sakabe, Y. and Takagi, H.: Nonreducible mechanism of {(Ba1−xCax)O}mTiO2 (m>1) ceramics. Jpn. J. Appl. Phys. 41(11A), 6461 (2002).
26.Yoon, S.H., Kang, S.H., Kwon, S.H., and Hur, K.H.: Resistance degradation behavior of Ca-doped BaTiO3. J. Mater. Res. 25, 2135 (2010).
27.Hennings, D., Schnell, A., and Simon, G.: Diffuse ferroelectric phase transitions in Ba(Ti1−yZry)O3 ceramics. J. Am. Ceram. Soc. 65, 539 (1982).
28.Wada, S., Adachi, H., Kakemoto, H., Chazono, H., Mizuno, Y., Kishi, H., and Tsurumi, T.: Phase transition behaviors of BaTiO3-BaZrO3 solid solutions under high direct current bias fields. J. Mater. Res. 17, 456 (2002).
29.Feng, Q., McConville, C.J., and Edwards, D.D.: Dielectric properties and microstructures of Ba(Ti, Zr)O3 multilayer ceramic capacitors with Ni electrodes. J. Am. Ceram. Soc. 88, 1455 (2005).
30.Dobal, P.S., Dixit, A., Katiyar, R.S., Yu, Z., Guo, R., and Bhalla, A.S.: Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3-BaZrO3 system. J. Appl.Phys. 89, 8085 (2001).
31.Levi, R.D.: Solid solution trends that impact electrical design of submicron layers in dielectric capacitors. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 2009.
32.Boukamp, B.A.: A nonlinear least squares fit procedure for analysis of immittance data of electrochemical system. Solid State Ionics 20, 31 (1986).
33.Han, J.H. and Kim, D.Y.: Determination of three-dimensional grain size distribution by linear intercept measurement. Acta Mater. 46, 2021 (1998).
34.Guo, X. and Maier, J.: Grain boundary blocking effect in Zirconia: A Schottky barrier analysis. J. Electrochem. Soc. 148, E121 (2001).
35.Macdonald, J.R.: Impedance Spectroscopy (John Wiley & Sons, New York, 1987), p. 120.
36.van Dijk, T. and Burggraaf, A.J.: Grain boundary effects on ionic conductivity in ceramic GdxZr1−xO2−(x/2) solid solutions. Phys. Status Solidi A 63, 229 (1981).
37.Fleig, J., Rodwald, S., and Maier, J.: Microcontact impedance measurements of individual highly resistive grain boundaries: General aspects and application to acceptor-doped SrTiO3. J. Appl. Phys. 87, 2372 (2000).
38.Yoon, S.H., Randall, C.A., and Hur, K.H.: Effect acceptor concentration bulk electrical conduction in acceptor (Mg)-doped BaTiO3. J. Appl. Phys. 107, 103721 (2010).
39.Rodwald, S., Fleig, J., and Maier, J.: Microcontact impedance spectroscopy at single grain boundaries in Fe-doped SrTiO3 polycrystals. J. Am. Ceram. Soc. 84, 521 (2001).
40.Souza, R.A.: The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys. 11, 9939 (2009).
41.Jamnik, J. and Maier, J.: Treatment of the impedance of mixed conductors: Equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc. 146, 4183 (1999).
42.Jamnik, J. and Maier, J.: Generalized equivalent circuits for mass and charge transport: Chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3, 1668 (2001).
43.Jamnik, J., Guo, X., and Maier, J.: Field-induced relaxation of bulk composition due to internal boundaries. Appl. Phys. Lett. 82, 2820 (2003).
44.Kao, K.C.: Dielectric Phenomena in Solids (Elsevier Academic Press, San Diego, CA, 2004).
45.Yoon, S.H., Randall, C.A., and Hur, K.H.: Difference between resistance degradation of fixed valence acceptor (Mg) and variable valence acceptor (Mn)-doped BaTiO3 ceramics. J. Appl. Phys. 108, 064101 (2010).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed