Skip to main content Accessibility help

Residual stress–driven test technique for freestanding ultrathin films: Elastic behavior and residual strain

  • Gayatri K. Cuddalorepatta (a1), Gi-Dong Sim (a1), Han Li (a2), Daniel Pantuso (a2) and Joost J. Vlassak (a1)...


Elastic modulus and residual stress in freestanding ultrathin films (<100 nm) are characterized using bilayer cantilevers. The cantilevers comprise a test film and a well-characterized reference material (SU-8). When released from the substrate, residual stresses in the bilayer cantilever cause it to deflect with measurable curvatures, allowing the determination of both stiffness and residual stress of the test film. The technique does not require sophisticated mechanical test equipment and serves as a useful metrology tool for characterizing coatings immediately after fabrication in a clean room assembly line. The measured biaxial modulus and residual strain of 75 nm copper films are 211 ± 19 GPa and (7.05 ± 0.22) × 10−3, respectively. Additional experiments on the freestanding structures yield a mean Young’s modulus of 115 GPa. These properties are in close agreement with those measured from additional residual stress–driven structures developed on the same coatings by the authors.


Corresponding author

a)Address all correspondence to this author.


Hide All

Present Address: KAIST, Daejeon, South Korea.



Hide All
1.Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 56115626 (1998).
2.Hahn, E.N. and Meyers, M.A.: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng., A 646, 101134 (2015).
3.Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H.: On the validity of the Hall–Petch relationship in nanocrystalline materials. Scr. Metall. 23, 16791683 (1989).
4.Haque, M.A. and Saif, M.T.A.: Mechanical behavior of 30–50 mn thick aluminum films under uniaxial tension. Scr. Mater. 47, 863867 (2002).
5.Budiansky, B. and O’Connell, R.J.: Elastic-moduli of a cracked solid. Int. J. Solids Struct. 12, 8197 (1976).
6.Huang, H.B.: Mechanical properties of freestanding polycrystalline metallic thin films and multilayers. Ph.D. thesis, Harvard University, Cambridge, Massachusetts, 1998.
7.Nan, C.W., Li, X.P., Cai, K.F., and Tong, J.Z.: Grain size-dependent elastic moduli of nanocrystals. J. Mater. Sci. Lett. 17, 19171919 (1998).
8.Phillpot, S.R., Wolf, D., and Gleiter, H.: Molecular-dynamics study of the synthesis and characterization of a fully dense, 3-dimensional nanocrystalline material. J. Appl. Phys. 78, 847861 (1995).
9.Zhou, K.: Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics. Mater. Sci. Eng., A 615, 9297 (2014).
10.Okolo, B.C.: Stress and microstructure of sputter deposited thin copper and niobium films. Ph.D. thesis, Universitätsbibliothek der Universität Stuttgart, Stuttgart, 2003.
11.Li, X.X.: Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus. Appl. Phys. Lett. 83, 30813308 (2003).
12.Suresh, S., Nieh, T.G., and Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951957 (1999).
13.Vlassak, J.J. and Nix, W.D.: A new bulge test technique for the determination of Young modulus and Poisson’s ratio of thin-films. J. Mater. Res. 7, 32423249 (1992).
14.Sim, G.D., Park, J.H., Uchic, M.D., Shade, P.A., Lee, S.B., and Vlassak, J.J.: An apparatus for performing microtensile tests at elevated temperatures inside a scanning electron microscope. Acta Mater. 61, 75007510 (2013).
15.Chang, J.Y., Yu, G.P., and Huang, J.H.: Determination of Young’s modulus and Poisson’s ratio of thin films by combining sin2ψ X-ray diffraction and laser curvature methods. Thin Solid Films 517, 67596766 (2009).
16.Coulombier, M., Guisbiers, G., Colla, M.S., Vayrette, R., Raskin, J.P., and Pardoen, T.: On-chip stress relaxation testing method for freestanding thin film materials. Rev. Sci. Instrum. 83, 9 (2012).
17.Favache, A.: A generic “micro-stoney” method for the measurement of internal stress and elastic modulus of ultrathin films. Rev. Sci. Instrum. 87, 9 (2016).
18.Weihs, T.P., Hong, S., Bravman, J.C., and Nix, W.D.: Mechanical deflection of cantilever microbeams—A new technique for testing the mechanical-properties of thin-films. J. Mater. Res. 3, 931942 (1988).
19.Cuddalorepatta, G.K., Li, H., Pantuso, D., and Vlassak, J.J.: Stress–strain behavior of freestanding ultra thin films (2019). Manuscript in preparation.
20.Cuddalorepatta, G.K., van Rees, W.M., Li, H., Pantuso, D., Mahadevan, L.N., and Vlassak, J.J.: Poisson’s ratio and residual strain of freestanding ultra thin films. J. Mech. Phys. Solids (2019). Manuscript in preparation.
21.Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P.: SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 7, 121124 (1997).
22.Hopcroft, M., Kramer, T., Kim, G., Takashima, K., Higo, Y., Moore, D., and Brugger, J.: Micromechanical testing of SU-8 cantilevers. Fatigue Fract. Eng. Mater. Struct. 28, 735742 (2005).
23.Landolt, H. and Börnstein, R.: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (Springer-Verlag, Berlin, 1979).
24.Schiotz, J., Di Tolla, F.D., and Jacobsen, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561563 (1998).
25.Prokoshkina, D. and Esin, V.A.: Grain boundary width, energy and self-diffusion in nickel: Effect of material purity. Acta Mater. 61, 5188 (2013).
26.Sim, G.D., Choi, Y.S., Lee, D., Oh, K.H., and Vlassak, J.J.: High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016 K. Acta Mater. 113, 3240 (2016).
27.Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London, Ser. A 241, 376396 (1957).
28.Huang, H.B. and Spaepen, F.: Tensile testing of free-standing cu, ag and al thin films and Ag/Cu multilayers. Acta Mater. 48, 32613269 (2000).
29.Ledbetter, H.M. and Naimon, E.R.: Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data 3, 897 (1974).
30.Keller, S.S., Blagoi, G., Lillemose, M., Haefliger, D., and Boisen, A.: Processing of thin SU-8 films. J. Micromech. Microeng. 18, 10 (2008).
31.Nordstrom, M., Keller, S., and Lillemose, M.: SU-8 cantilevers for bio/chemical sensing; fabrication, characterization and development of novel read-out methods. Sensors 8, 15951612 (2008).
32.Lee, S.J., Shi, W., Maciel, P., and Cha, S.W.: Top-edge profile control for SU-8 structural photoresist. In Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium (Cat. No. 03CH37488) (IEEE, Boise, Idaho, 2003); pp. 389390.
33.Thompson, C.V.: Structure evolution during processing of polycrystalline films. Annu. Rev. Mater. Sci. 30, 159190 (2000).
34.Freund, L.B., Floro, J.A., and Chason, E.: Extensions of the stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74, 1987 (1999).
35.Schafer, R.W.: What is a Savitzky–Golay filter? [lecture notes]. IEEE Signal Process. Mag. 28, 111117 (2011).


Type Description Title
Supplementary materials

Cuddalorepatta et al. supplementary material
Cuddalorepatta et al. supplementary material 1

 Word (2.3 MB)
2.3 MB
Supplementary materials

Cuddalorepatta et al. supplementary material
Cuddalorepatta et al. supplementary material 2

 Unknown (406 KB)
406 KB

Residual stress–driven test technique for freestanding ultrathin films: Elastic behavior and residual strain

  • Gayatri K. Cuddalorepatta (a1), Gi-Dong Sim (a1), Han Li (a2), Daniel Pantuso (a2) and Joost J. Vlassak (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed