Skip to main content Accessibility help

Research on the coarsening mechanism of precipitations and its effect on toughness for nickel-based weld metal during thermal aging

  • Tongjiao Chu (a1), Huali Xu (a1), Haichao Cui (a1) and Fenggui Lu (a1)


Coarsening mechanism of precipitations was investigated in a weld metal of Alloy 617 during long-term aging at 750 °C, and its effect on impact toughness was clarified distinctly. The needle-like M6C phases at the grain boundary nucleated and coarsened at 2000 h and then presented a stable size with aging to 8000 h. Spherical γ′ phase grew rapidly with the rate of 0.0121 nm/h when aged at 1000 h; then, its ripening rate (RR) reduced to 0.0033 nm/h at 8000 h and stabilized around it. The coarsening of M6C and γ′ was, respectively, controlled by interface diffusion and volume diffusion with the coarsening rate constant of 7.865 × 10−20 m2/s and 1.519 × 10−27 m3/s. Interaction of M6C and γ′ could facilitate their coarsening and cause dramatic decrease in toughness at the early stage. At aging to 8000 h and more, the lower RR of needle-like M6C phases and γ′ phases helped to form stable toughness at a later stage.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Yang, Z.B., Sun, J., Lu, S., and Vitos, L.: Assessing elastic property and solid-solution strengthening of binary Ni–Co, Ni–Cr, and ternary Ni–Co–Cr alloys from first-principles theory. J. Mater. Res. 33, 2763 (2018).
2.Yuan, L., Hu, R., and Li, J.: Evolution behavior of superlattice phase with Pt2Mo-type structure in Ni–Cr–Mo alloy with low atomic Mo/Cr ratio. J. Mater. Res. 31, 427 (2016).
3.Cozar, R. and Pineau, A.: Morphology of γ′ and γ″ precipitates and thermal stability of Inconel 718 type alloys. Metall. Trans. 4, 47 (1973).
4.Xie, J., Shen, J., Chen, N., and Seetharaman, S.: Site preference and mechanical properties of Cr23−xTxC6 and Fe21T2C6 (T = Mo, W). Acta Mater. 54, 4653 (2006).
5.Sims, C.T., Stoloff, N.S., and Hagel, W.C.: Superalloys II, 2nd ed. (Wiley-Interscience Press, USA, 1987); pp. 415420.
6.Yang, F.M., Sun, X.F., Zhang, W., Kang, Y.P., Guan, H.R., and Hu, Z.Q.: Secondary M6C precipitation in K40S cobalt-base alloy. Mater. Lett. 49, 160 (2001).
7.Wang, C.S., Guo, Y.A., Guo, J.T., and Zhou, L.Z.: Gamma prime stability and its influence on tensile behavior of a wrought superalloy with different Fe contents. J. Mater. Res. 31, 1361 (2016).
8.Ribis, J., Bordas, E., Trocellier, P., Serruys, Y., de Carlan, Y., and Legris, A.: Comparison of the neutron and ion irradiation response of nano-oxides in oxide dispersion strengthened materials. J. Mater. Res. 30, 2210 (2015).
9.Li, Y.S., Chen, Z., Lu, Y.L., and Wang, Y.X.: Coarsening kinetics of intermetallic precipitates in Ni75AlxV25−x alloys. J. Mater. Res. 22, 61 (2007).
10.Meher, S., Carroll, M.C., Pollock, T.M., and Carroll, L.J.: Designing nickel base alloys for microstructural stability through low γ–γ′ interfacial energy and lattice misfit. Mater. Des. 140, 249 (2018).
11.Wu, Y., Liu, Y., Li, C., Xia, X., Wu, J., and Li, H.: Coarsening behavior of γ′ precipitates in the γ′ + γ area of a Ni3Al-based alloy. J. Alloys Compd. 771, 526 (2019).
12.Zhou, H.J., Xue, F., Chang, H., and Feng, Q.: Effect of Mo on microstructural characteristics and coarsening kinetics of γ′ precipitates in Co–Al–W–Ta–Ti alloys. J. Mater. Sci. Technol. 34, 799 (2018).
13.Zhang, F., Cao, W., Zhang, C., Chen, S., Zhu, J., and Lv, D.: Simulation of Co-precipitation kinetics of γ′ and γ″ in superalloy 718. In Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications Ott, E., Liu, X.B., Andersson, J., Bi, Z.N., Bockenstedt, K., Dempster, I., Groh, J., Heck, K., Jablonski, P., Kaplan, M., Nagahama, D. and Sudbrack, C. eds.; Springer Publishing: Berlin, Germany, 2018; P.147.
14.Fuchs, G.E.: Solution heat treatment response of a third generation single crystal Ni-base superalloy. Mater. Sci. Eng., A 300, 52 (2001).
15.Ezugwu, E.O., Wang, Z.M., and Machado, A.R.: The machinability of nickel-based alloys: A review. J. Mater. Process. Technol. 86, 1 (1999).
16.Wu, Q., Song, H., Swindeman, R.W., Shingledecker, J.P., and Vasudevan, V.K.: Microstructure of long-term aged IN617 Ni-base superalloy. Metall. Mater. Trans. A 39, 2569 (2008).
17.Zhou, X.Z. and Su, Y.C.: Microstructure of long-term aged IN617 Ni-base superalloy. Mater. Sci. Eng., A 527, 5153 (2010).
18.Donoso, E., Espinoza, R., Diánez, M.J., and Criad, J.M.: Microcalorimetric study of the annealing hardening mechanism of a Cu–2.8Ni–1.4Si (at.%) alloy. Mater. Sci. Eng., A 556, 612 (2012).
19.Oblak, J., Paulonis, D., and Duvall, D.: Coherency strengthening in Ni base alloys hardened by DO 22 γ′ precipitates. Metall. Trans. 5, 143 (1974).
20.Liu, L.R., Jin, T., Zhao, N.R., Wang, Z.H., Sun, X.F., Guan, H.R., and Hu, Z.Q.: Effect of carbon addition on the creep properties in a Ni-based single crystal superalloy. Mater. Sci. Eng., A 385, 105 (2004).
21.Yang, J., Zheng, Q., Sun, X., Guan, H., and Hu, Z.: Relative stability of carbides and their effects on the properties of K465 superalloy. Mater. Sci. Eng., A 429, 341 (2006).
22.Ali, M.K., Hashmi, M.S.J., and Yilbas, B.S.: Fatigue properties of the refurbished INCO-617 alloy. J. Mater. Process. Technol. 118, 45 (2001).
23.Jun, O.Y., Seog, R.W., Changmo, S., Hiun, K.I., and Hwa, H.J.: Grain boundary filmlike Fe–Mo–Cr phase in nitrogen-added type 316l stainless steels. J. Mater. Res. 14, 8 (1999).
24.Lirong, L., Maokai, C., Sugui, T., Zhang, Z.Y., and Tao, J.: Effect of Re content on precipitation behaviour of secondary phases in a single-crystal Ni-based superalloy during high-temperature thermal exposure. Mater. High Temp. 35, 355 (2018).
25.Yashiro, K., Kurose, F., Nakashima, Y., Kubo, K., Tomita, Y., and Zbib, H.M.: Discrete dislocation dynamics simulation of cutting of γ′ precipitate and interfacial dislocation network in Ni-based superalloys. Int. J. Plast. 22, 713 (2006).
26.Sun, Y.Q. and Hazzledine, P.M.: A TEM weak-beam study of dislocations in γ′ in a deformed Ni-based superalloy. Philos. Mag. A 58, 603 (1988).
27.Finsy, R.: On the critical radius in Ostwald ripening. Langmuir 20, 2975 (2004).
28.Streitenberger, P. and Zöllner, D.: The envelope of size distributions in Ostwald ripening and grain growth. Acta Mater. 88, 334 (2015).


Related content

Powered by UNSILO

Research on the coarsening mechanism of precipitations and its effect on toughness for nickel-based weld metal during thermal aging

  • Tongjiao Chu (a1), Huali Xu (a1), Haichao Cui (a1) and Fenggui Lu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.