Skip to main content Accessibility help

Research on highly sensitive humidity sensor based on Tr-MWCNT/HEC composite films

  • Dayue Wang (a1), Ying Huang (a2), Yangyang Ma (a3), Ping Liu (a3), Caixia Liu (a3) and Yugang Zhang (a3)...


This study demonstrates a highly sensitive humidity sensor based on treated multiwalled carbon nanotube (tr-MWCNT) and hydroxyethyl cellulose (HEC) composite films. Tr-MWCNTs are obtained by mixed acid treatment to enhance their hydrophilicity and improve their dispersion in distilled water. Compared to tr-MWCNT/silicone rubber (SR) composite film, the humidity sensitivity of tr-MWCNT/HEC film is much higher than tr-MWCNT/SR film with the same film thickness. The humidity sensing mechanisms of tr-MWCNT/HEC composites are explained by electron donation model and swelling mechanism. Speaking and blowing experiments were also carried out and the results show that tr-MWCNT/HEC composite film is sensitive to both speaking and blowing; furthermore, it can distinguish the small humidity level difference between speaking and blowing. Other sensing characteristics, including response and recovery time, stability, and temperature effect, are also investigated. The high humidity sensitivity of tr-MWCNT/HEC composite film indicates that it can be an excellent humidity sensitive material.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Lee, C.Y. and Lee, G.B.: Humidity sensors: A review. Sens. Lett. 3, 1 (2005).
2. Kulwicki, B.M.: Humidity sensors. J. Am. Ceram. Soc. 74, 697 (1991).
3. Yamazoe, N. and Shimizu, Y.: Humidity sensors: Principles and applications. Sens. Actuators 10, 379 (1986).
4. Sakai, Y., Sadaoka, Y., and Matsuguchi, M.: Humidity sensors based on polymer thin films. Sens. Actuators, B 35, 85 (1996).
5. Traversa, E.: Ceramic sensors for humidity detection: The state-of-the-art and future developments. Sens. Actuators, B 23, 135 (1995).
6. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
7. Chen, W.P., Zhao, Z.G., Liu, X.W., Zhang, Z.X., and Suo, C.G.: A capacitive humidity sensor based on multi-wall carbon nanotubes (MWCNTs). Sensors 9, 7431 (2009).
8. Saleem, M., Karimov, K.S., Karieva, Z.M., and Mateen, A.: Humidity sensing properties of CNT–OD–VETP nanocomposite films. Phys. E 43, 28 (2010).
9. Yeow, J.T.W. and She, J.P.M.: Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology 17, 5441 (2006).
10. Su, P.G., Sun, Y.L., and Lin, C.C.: A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sens. Actuators, B 115, 338 (2006).
11. Zhang, Y., Yu, K., Xu, R., Jiang, D., Luo, L., and Zhu, Z.: Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor. Sens. Actuators, A 120, 142 (2005).
12. Chen, H.W., Wu, R.J., Chan, K.H., Sun, Y.L., and Su, P.G.: The application of CNT/Nafion composite material to low humidity sensing measurement. Sens. Actuators, B 104, 80 (2005).
13. Matsuguch, M., Kuroiwa, T., Miyagishi, T., Suzuki, S., Ogura, T., and Sakai, Y.: Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens. Actuators, B 52, 53 (1998).
14. Kim, J.H., Hong, S.M., Lee, J.S., Moon, B.M., and Kim, K.: High sensitivity capacitive humidity sensor with a novel polyimide design fabricated by MEMS technology. In Nano/Micro Engineered and Molecular Systems, 2009. 4th IEEE International Conference on NEMS 2009, IEEE, pp. 703706.
15. Liu, L., Ye, X., Wu, K., Han, R., Zhou, Z., and Cui, T.: Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors 9, 1714 (2009).
16. Slobodian, P., Riha, P., Lengálová, A., Svoboda, P., and Sáha, P.: Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon 49, 2499 (2011).
17. Wong, Y.M., Kang, W.P., Davidson, J.L., Wisitsora-At, A., and Soh, K.L.: A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection. Sens. Actuators, B 93, 327 (2003).
18. Cao, C.L., Hu, C.G., Fang, L., Wang, S.X., Tian, Y.S., and Pan, C.Y.: Humidity sensor based on multi-walled carbon nanotube thin films. J. Nanomater. 2011, 5 (2011).
19. Su, P.G. and Wang, C.S.: In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sens. Actuators, B 124, 303 (2007).
20. Muto, S., Suzuki, O., Amano, T., and Morisawa, M.: A plastic optical fibre sensor for real-time humidity monitoring. Meas. Sci. Technol. 14, 746 (2003).
21. Harun, S., Batumalay, M., Lokman, A., Arof, H., Ahmad, H., and Ahmad, F.: Tapered plastic optical fiber coated with HEC/PVDF for measurement of relative humidity. IEEE Sens. J. 13, 4702 (2013).
22. Xia, L., Li, L., Li, W., Kou, T., and Liu, D.: Novel optical fiber humidity sensor based on a no-core fiber structure. Sens. Actuators, A 190, 1 (2013).
23. Xiong, J., Zheng, Z., Qin, X., Li, M., Li, H., and Wang, X.: The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44, 2701 (2006).
24. Yu, H., Cao, T., Zhou, L., Gu, E., Yu, D., and Jiang, D.: Layer-by-layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sens. Actuators, B 119, 512 (2006).
25. Yoo, K.P., Lim, L.T., Min, N.K., Lee, M.J., Lee, C.J., and Park, C.W.: Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films. Sens. Actuators, B 145, 120 (2010).
26. Tang, Q.Y., Chan, Y.C., and Zhang, K.: Fast response resistive humidity sensitivity of polyimide/multiwall carbon nanotube composite films. Sens. Actuators, B 152, 99 (2011).
27. Jiang, W.F., Xiao, S.H., Feng, C.Y., Li, H.Y., and Li, X.J.: Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars. Sens. Actuators, B 125, 651 (2007).
28. Chu, J., Peng, X., Feng, P., Sheng, Y., and Zhang, J.: Study of humidity sensors based on nanostructured carbon films produced by physical vapor deposition. Sens. Actuators, B 178, 508 (2013).
29. Varghese, O.K., Kichambre, P.D., Gong, D., Ong, K.G., Dickey, E.C., and Grimes, C.A.: Gas sensing characteristics of multi-wall carbon nanotubes. Sens. Actuators, B 81, 32 (2001).
30. Maiti, A., Andzelm, J., Tanpipat, N., and von Allmen, P.: Effect of adsorbates on field emission from carbon nanotubes. Phys. Rev. Lett. 87, 155502 (2001).
31. Bruzzi, M., Miglio, S., Scaringella, M., Bongiorno, G., Piseri, P., Podesta, A., and Milani, P.: First study of humidity sensors based on nanostructured carbon films produced by supersonic cluster beam deposition. Sens. Actuators, B 100, 173 (2004).
32. Hong, H.P., Jung, K.H., Kim, J.H., Kwon, K.H., Lee, C.J., Yun, K.N., and Min, N.K.: Percolated pore networks of oxygen plasma-activated multi-walled carbon nanotubes for fast response, high sensitivity capacitive humidity sensors. Nanotechnology 24, 085501 (2013).
33. Li, K., Zhang, C., Du, Z., Li, H., and Zou, W.: Preparation of humidity-responsive antistatic carbon nanotube/PEI nanocomposites. Synth. Met. 162, 2010 (2012).
34. Lee, J., Cho, D., and Jeong, Y.: A resistive-type sensor based on flexible multi-walled carbon nanotubes and polyacrylic acid composite films. Solid-State Electron. 87, 80 (2013).
35. Wang, Y., Park, S., Yeow, J.T., Langner, A., and Müller, F.: A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators, B 149, 136 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed