Skip to main content Accessibility help

Reorientation of carbon nanotubes in polymer matrix composites using compressive loading

  • Michael J. Lance (a1), Chun-Hway Hsueh (a1), Ilia N. Ivanov (a1) and David B. Geohegan (a1)


Purified single-walled nanotubes (SWNTs) were dispersed in an epoxy polymer and subjected to uniaxial compressive loading. The orientation and stress in the nanotubes were monitored in situ using polarized Raman microscopy. At strains less than 2%, the nanotubes reorient normal to the direction of compression, thereby minimizing the local strain energy. Above 2% strain, the Raman peak shift reaches a plateau. A new analytical model, which approximates the SWNT reorientation by varying the aspect ratio of a representative spheroid, predicted the rotation behavior of nanotubes under load. The results of this model suggest that the observed plateau of the Raman peak shift is caused by both polymer yielding and interfacial debonding at the ends of nanotubes.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Calvert, P.: A recipe for strength. Nature 399, 210 (1999).
2.Thostenson, E.T., Ren, Z.F. and Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899 (2001).
3.Bendiab, N., Almairac, R., Sauvajol, J.L., Rols, S. and Elkaim, E.: Orientation of single-walled carbon nanotubes by uniaxial pressure. J. Appl. Phys. 93, 1769 (2003).
4.Jin, L., Bower, C. and Zhou, O.: Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197 (1998).
5.Wood, J.R., Zhao, Q. and Wagner, H.D.: Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy. Composites Part A-Appl. Sci. Manuf. 32, 391 (2001).
6.Frogley, M.D. and Wagner, H.D.: Mechanical alignment of quasi-one-dimensional nanoparticles. J. Nanosci. Nanotechnol. 2, 517 (2002).
7.Frogley, M.D., Ravich, D. and Wagner, H.D.: Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63, 1647 (2003).
8.Zhang, X.F., Liu, T., Sreekumar, T.V., Kumar, S., Moore, V.C., Hauge, R.H. and Smalley, R.E.: Poly(vinyl alcohol)/SWNT composite film. Nano Lett. 3, 1285 (2003).
9.Frogley, M.D., Zhao, Q. and Wagner, H.D.: Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain. Phys. Rev. B 65(2002).
10.Zhao, Q., Frogley, M.D. and Wagner, H.D.: Direction-sensitive strain-mapping with carbon nanotube sensors. Compos. Sci. Technol. 62, 147 (2002).
11.Puretzky, A.A., Geohegan, D.B., Fan, X. and Pennycook, S.J.: Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Appl. Phys. Mater. Sci. Proc. 70, 153 (2000).
12.Puretzky, A.A., Geohegan, D.B., Schittenhelm, H., Fan, X.D. and Guillorn, M.A.: Time-resolved diagnostics of single wall carbon nanotube synthesis by laser vaporization. Appl. Surf. Sci. 197, 552 (2002).
13.Puretzky, A.A., Schittenhelm, H., Fan, X.D., Lance, M.J., Allard, L.F. and Geohegan, D.B.: Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization. Phys. Rev. B 65(2002).
14.Gommans, H.H., Alldredge, J.W., Tashiro, H., Park, J., Magnuson, J. and Rinzler, A.G.: Fibers of aligned single-walled carbon nanotubes: Polarized Raman spectroscopy. J. Appl. Phys. 88, 2509 (2000).
15.Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J.: Constitutive modeling of nanotube-reinforced polymer composites. Compos. Sci. Technol. 63, 1671 (2003).
16.Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London A241, 376 (1957).
17.Mori, T. and Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571 (1973).
18.Hsueh, C.H.: Effects of aspect ratios of ellipsoidal inclusions on elastic stress transfer of ceramic composites. J. Am. Ceram. Soc. 72, 344 (1989).
19.Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72 (1952).
20.Piggott, M.R.: Load Bearing Fibre Composites (Pergamon Press, Elmsford, NY, 1980).
21.Hsueh, C.H.: Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 123, 1 (1990).
22.Yu, M.F., Files, B.S., Arepalli, S. and Ruoff, R.S.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000).
23.Frankland, S.J.V., Harik, V.M., Degard, G.M., Brenner, D.W. and Gates, T.S.: The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63, 1655 (2003).
24.Jin, Y. and Yuan, F.G.: Simulation of elastic properties of single-walled carbon nanotubes. Compos. Sci. Technol. 63, 1507 (2003).


Reorientation of carbon nanotubes in polymer matrix composites using compressive loading

  • Michael J. Lance (a1), Chun-Hway Hsueh (a1), Ilia N. Ivanov (a1) and David B. Geohegan (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed