Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:42:47.624Z Has data issue: false hasContentIssue false

Relative effects of Pb and Re doping in Hg-1223 thick films grown on Ag substrates

Published online by Cambridge University Press:  03 March 2011

J.H. Su*
Affiliation:
National High Magnetic Field Laboratory, Tallahassee, Florida 32310; and Department of Mechanical Engineering, Florida Agricultural and Mechanical University-Florida State University College of Engineering, Tallahassee, Florida 32310
P.V.P.S.S. Sastry
Affiliation:
Center for Advanced Power Systems, Tallahassee, Florida 32310
J. Schwartz
Affiliation:
National High Magnetic Field Laboratory, Tallahassee, Florida 32310; Department of Mechanical Engineering, Florida Agricultural and Mechanical University-Florida State University College of Engineering, Tallahassee, Florida 32310; and Center for Advanced Power Systems, Tallahassee, Florida 32310
*
a)Address all correspondence to this author. e-mail: jhsu@magnet.fsu.edu
Get access

Abstract

The relative effects of Pb and Re doping on microstructure, irreversibility field, and electronic anisotropy of HgBa2Ca2Cu3O8+δ (Hg-1223) thick films grown on Ag substrates prepared by dip-coating were studied. Both Pb- and Re-doped films exhibit the dominant phase of Hg-1223, characterized by a superconducting transition temperature (Tc) of 133 K. Both dopants distribute homogeneously in the Hg-1223 grains and promote grain growth. Pb-doped films have larger colony size compared to the Re-doped. The irreversibility fields (Hirr) of (Hg,Re)-1223 are significantly higher than those of (Hg,Pb)-1223 at temperatures below 100 K. The logarithmic plots of Hirr versus (1 – T/Tc) show both Pb- and Re-doped have a crossover temperature reflecting a transition from two- to three-dimensional behavior with increasing temperature. Re doping significantly decreases the electronic anisotropy γ, which would enhance flux pinning and consequently improve the critical current density. The differences between Pb and Re dopants in affecting γ are explained in terms of crystal structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schilling, A., Cantoni, M., Guo, J.D. andOtt, H.R.: Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature 363, 56 (1993).CrossRefGoogle Scholar
2.Sun, Y.R., Amm, K.M. andSchwartz, J.: Flux pinning and magnetic anisotropy in neutron irradiated Hg-Ba-Ca-Cu-O. IEEE Trans. Appl. Supercond. 5, 1870 (1995).CrossRefGoogle Scholar
3.Couach, M., Khoder, A.F., Calemczuk, R., Marcenat, Ch., Tholence, J-L., Capponi, J.J. andGorius, M.F.: Reversible mixed state, specific heat under magnetic field and superconducting fluctuations in the normal state of the high T c Hg-1223. Phys. Lett. A 188, 85 (1994).Google Scholar
4.Isawa, K., Tokiwa-Yamamoto, A., Itoh, M., Adachi, S. andYamauchi, H.: The effect of Pb doping in HgBa2Ca2Cu3O8+δ superconductor. Physica C 217, 11 (1993).CrossRefGoogle Scholar
5.Cunha, A.G., Orlando, M.T.D., Alves, K.M.B., Martinez, L.G., Emmerich, F.G. andBaggio-Saitovitch, E.: Rhenium effect in the formation and stability of HgCaO2 and Hg1−xRexBa2Ca2Cu3O8+δ superconductor. Physica C 356, 97 (2001).CrossRefGoogle Scholar
6.Wolters, Ch., Amm, K.M., Sun, Y.R. andSchwartz, J.: Synthesis of (Hg,Re)Ba2Can−1CunOy superconductors. Physica C 267, 164 (1996).CrossRefGoogle Scholar
7.Meng, R.L., Hickey, B.R., Sun, Y.Y., Cao, Y., Kinalidis, C., Meen, J., Xue, Y.Y. andChu, C.W.: Formation of HgBa2Ca2Cu3O8+δ with additives under ambient conditions. Physica C 260, 1 (1996).CrossRefGoogle Scholar
8.Puzniak, R., Karpinski, J., Wisniewski, A., Szymczak, R., Angst, M., Schwer, H., Molinski, R. andKopnin, E.M.: Influence of Re substitution on the flux pinning in (Hg,Re)Ba2Ca2Cu3O8+δ single crystals. Physica C 309, 161 (1998).CrossRefGoogle Scholar
9.Shao, H.M., Lam, C.C., Fung, P.C.W., Wu, X.S., Du, J.H., Shen, G.J., Chow, J.C.L., Ho, S.L., Hung, K.C. andYao, X.X.: The synthesis and characterization of HgBa2Ca2Cu3O8+δ superconductors with substitution of Hg by Pb. Physica C 246, 207 (1995).CrossRefGoogle Scholar
10.Isawa, K., Tokiwa-Yamamoto, A., Itoh, M., Adachi, S. andYamauchi, H.: Pb-doping effect on irreversibility fields of HgBa2Ca2Cu3O8+δ superconductors. Appl. Phys. Lett. 65, 2105 (1994).CrossRefGoogle Scholar
11.Ogawa, A., Inoue, N., Sugano, T., Adachi, S. andTanabe, K.: Fabrication of (Hg,Re)Ba2CaCu2Oy thin films on LSAT substrates by long heat treatment. Physica C 385, 443 (2003).CrossRefGoogle Scholar
12.Zhou, J., Yang, S.Z., Ji, Z.M., Wu, P.H., Yu, Y., Shao, H.M., Yao, X.X., Lai, M.Y. andZhang, W.L.: Fabrication of highly c -axis oriented Hg-Pb-Ba-Ca-Cu-O thin films. Supercond. Sci. Technol. 10, 998 (1997).Google Scholar
13.Meng, R.L., Hickey, B., Wang, Y.Q., Sun, Y.Y., Gao, L., Xue, Y.Y. andChu, C.W.: Processing of highly oriented (Hg1-xRex)Ba2Ca2Cu3O8+δ tape with x ∼0.1. Appl. Phys. Lett. 68, 3177 (1996).CrossRefGoogle Scholar
14.Peacock, G.B., Gameson, I., Edwards, P.P., Khaliq, M., Yang, G., Shields, T.C. andAbell, J.S.: Fabrication of high-temperature superconducting HgBa2CuO4+δ within silver-sheathed tapes. Physica C 273, 193 (1997).CrossRefGoogle Scholar
15.Amm, K.M., Wolters, Ch., Knoll, D.C., Peterson, S.C. andSchwartz, J.: Growth of Hg0.9Re0.1Ba2Ca2Cu3O8+x on a metallic substrate. IEEE Trans. Appl. Supercond. 7, 1973 (1997).CrossRefGoogle Scholar
16.Su, J.H., Sastry, P.V.P.S.S. andSchwartz, J.: Growth of Hg0.8Pb0.2Ba2Ca2 Cu3O8+δ thick films on Ag using a modified process route, IEEE Trans. Appl. Supercond. 11, 3118 (2001).Google Scholar
17.Su, J.H., Sastry, P.V.P.S.S. andSchwartz, J.: Synthesis and characterization of (Hg0.8Re0.2)Ba2CaCu2O6+δ thick films on Ag obtained by a two-step dip-coating/rolling method. Physica C 361, 292 (2001).CrossRefGoogle Scholar
18.Sastry, P.V.P.S.S., Amm, K.M., Knoll, D.C., Peterson, S.C. andSchwartz, J.: Synthesis and processing of (Hg,Pb)1Ba2Ca2Cu3Oy superconductors. Physica C 297, 223 (1998).CrossRefGoogle Scholar
19.Chow, J.C.L., Fung, P.C.W., Lam, C.C. andShao, H.M.: Observation of intergrowth structures of Hg-1212, Hg-1223 and Hg-1234 phases in a nominal Hg-1223 ceramic superconductor. Supercond. Sci. Technol. 8, 887 (1995).CrossRefGoogle Scholar
20.Chmaissem, O., Guptasarma, P., Welp, U., Hinks, D.G. andJorgensen, J.D.: Effect of Re substitution on the defect structure, and superconducting properties of (Hg1-xRex)Ba2Can−1CunO2n+2+δ (n = 2, 3, 4). Physica C 292, 305 (1997).CrossRefGoogle Scholar
21.Blatter, G., Feigel’man, M.V., Geshkenbein, V.B., Larkin, A.I. andVinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).CrossRefGoogle Scholar
22.Glazman, L.I. andKoshelev, A.E.: Thermal fluctuations and phase transitions in the vortex state of a layered superconductor. Phys. Rev. B 43, 2835 (1991).CrossRefGoogle ScholarPubMed
23.Kim, Y.C., Thompson, J.R., Christen, D.K., Sun, Y.R., Paranthaman, M. andSpecht, E.D.: Surface barriers, irreversibility line, and pancake vortices in an aligned HgBa2Ca2Cu3O8+δ superconductor. Phys. Rev. B 52, 4438 (1995).CrossRefGoogle Scholar
24. Joint Committee on Powder Diffraction Standards (JCPDS), International Center for Diffraction Data, Newton Square, PA, PCPDFWIN v. 2.02, 1999.Google Scholar