Skip to main content Accessibility help
×
Home

Reduced hardening of nanocrystalline nickel under multiaxial indentation loading

  • Bill T.F. Tang (a1), Yijian Zhou (a1), Thomas Zabev (a1), Iain Brooks (a2) and Uwe Erb (a3)...

Abstract

The work hardening behavior of electrodeposited nanocrystalline nickel (29 and 19 nm) was investigated under multiaxial loading and compared with coarse-grained nickel. Plastic strain gradients were introduced into the materials using large Rockwell D hardness indentations, and measured through cross-sectional hardness profiles. The results showed that the coarse-grained material exhibited substantial hardening up to twice the hardness of the deformation-free area due to dislocation mediated deformation, while the nanocrystalline materials displayed small hardness variations along the strain gradient, indicative of considerably reduced dislocation interactions. Moreover, the grain structure analysis (cumulative volume fraction and size distribution) for the nanocrystalline materials suggested the operation of both dislocation mediated and grain boundary controlled deformation mechanisms, the latter becoming more significant with increasing cumulative sample volume of very small grains. The plastic deformation zone sizes under Rockwell indentation of the 29 nm Ni are similar to those conventional materials with reduced strain hardening. Microhardness-indentation size effects were negligible in both the nanocrystalline and coarse-grained materials.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: yijian.zhou@utoronto.ca

References

Hide All
1.Safranek, W.H.: The Properties of Electrodeposited Metals and Alloys (American Elsevier Pub. Co., New York, 1974).
2.Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R., and Armstrong, R.W.: Hall-petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr. Metall. 20, 93 (1986).
3.El-Sherik, A.M., Erb, U., Palumbo, G., and Aust, K.T.: Deviations from Hall–Petch behaviour in as-prepared nanocrystalline nickel. Scr. Metall. Mater. 27, 1185 (1992).
4.Wang, N., Wang, Z., Aust, K.T., and Erb, U.: Room temperature creep behaviour of nanocrystalline nickel produced by an electrodeposition technique. Mater. Sci. Eng., A 237, 150 (1997).
5.Erb, U., Aust, K.T., and Palumbo, G.: Electrodeposited Nanocrystalline Metals, Alloys and Composites. In Nanostructured Materials, 2nd ed., Koch, C.C. ed.; William Andrew Publications: Norwich, New York, 2007; pp. 235292.
6.Kumar, K.S., Van Swygenhoven, H., and Suresh, S.: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
7.Koch, C.C.: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).
8.Ebrahimi, F., Zhai, Q., and Kong, D.: Deformation and fracture of electrodeposited copper. Scr. Mater. 39, 315 (1998).
9.Dalla Torre, F., Van Swygenhoven, H., and Victoria, M.: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).
10.Ma, E.: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49, 663 (2003).
11.Koch, C.C.: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst. Mater. 18, 9 (2003).
12.Kulovits, A., Wao, S.X., and Wiezovek, J.M.K.: Microstructural evolution in nanocrystalline Ni during cold-rolling. Acta Mater. 56, 4836 (2008).
13.Wu, X.L., Zhu, Y.T., Wei, Y.G., and Wei, Q.: Strong strain hardening in nanocrystalline nickel. Phys. Rev. Lett. 103, 20550 (2009).
14.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
15.Schiotz, J., Di Tolla, F.D., and Jacobson, K.W.: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 (1998).
16.Van Swygenhoven, H.: Grain boundaries, and dislocations. Science 296, 66 (2002).
17.ASTM E18–08b: Specification for Test Method for Rockwell Hardness of Metallic Materials (ASTM International, West Conshohocken, PA, 2011).
18.Samuels, L.E.: Mechanical grinding, abrasion and polishing. In Metals Handbook, Metallography and Microstructures, 9th ed., Vol. 9, ASM Metals Park:OH, USA, 1985; pp. 3347.
19.ASTM E384 – 10e2: Specification for Test Method for Knoop and Vickers Hardness of Materials (ASTM International, West Conshohocken, PA, 2004); pp. 86109.
20.Giallonardo, J.D., Erb, U., Aust, K.T., and Palumbo, G.: The influence of grain size on the Young’s modulus of electrodeposited nanocrystalline nickel and nickel-iron alloys. Philos. Mag. 91, 4594 (2011).
21.Tang, B.T.F., Erb, U., and Brooks, I.: Strain hardening in polycrystalline and nanocrystalline nickel. Adv. Mater. Res. 409, 550 (2012).
22.Conrad, H., Feuerstein, S., and Rice, L.: Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157 (1967).
23.Hou, X.D., Bushby, A.J., and Jennett, N.M.: Study of the interaction between the indentation size effect and Hall–Petch effect with spherical indenters on annealed polycrystalline copper. J. Phys. D: Appl. Phys. 41, 074006 (2008).
24.Dunstan, D.J., Ehrler, B., Bossis, R., Joly, S., P’ng, K.M.Y., and Bushby, A.J.: Elastic limit and strain hardening of thin wires in torsion. Phys. Rev. Lett. 103, 15501 (2009).
25.Bushby, A.J., Zhu, T.T., and Dunstan, D.J.: Slip distance model for the indentation size effect at the initiation of plasticity in ceramics and metals. J. Mater. Res. 24, 966 (2009).
26.Hou, X. and Jennett, N.M.: Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects. Acta Mater. 60, 4128 (2012).
27.Hou, X., Jennett, N.M., and Parlinska-Wojtan, M.: Exploiting interactions between structure size and indentation size effects to determine the characteristic dimension of nano-structured materials by indentation. J. Phys. D: Appl. Phys. 46, 265301 (2013).
28.Gale, W.F. and Totemeier, T.L. eds.: Smithhells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann, Burlington, MA, USA, 2004); pp. 2267.
29.Tabor, D.: A Simple theory of static and dynamic hardness. Proc. R. Soc. London, Ser. A 192, 247 (1948).
30.Williams, G. and O’Neill, H.: Straining of metals by indentation including work-softening effects. J. Iron Steel Inst. 182, 266 (1956).
31.Atkins, A. and Tabor, D.: Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149164 (1965).
32.Chaudhri, M.: Subsurface plastic strain distribution around spherical indentations in metals. Philos. Mag. A74, 1213 (1996).
33.Revankar, G.: ASM Handbook, Mechanical Testing and Evaluation, Vol. 8 (Materials Park, Ohio, USA, 2000); p. 195.
34.Hill, R., Storakers, B., and Zdunek, A.B.: A theoretical study of the Brinell hardness test. Proc. R. Soc. London, Ser. A 423, 301 (1989).
35.Mata, M., Anglada, M., and Alcala, J.: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17, 964 (2002).
36.Mata, M., Casals, O., and Alcala, J.: The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity. Int. J. Solids Struct. 43, 5994 (2006).
37.Samuels, L.E. and Mulhearn, T.O.: An experimental investigation of the deformed zone associated with indentation hardness impressions. J. Mech. Phys. Solids 5, 125 (1957).
38.Dugdale, D.S.: Cone indentation experiments. J. Mech. Phys. Solids 2, 265 (1954).
39.Chaudhri, M.: Subsurface deformation patterns around indentations in work-hardened mild steel. Philos. Mag. Lett. 67, 107 (1993).
40.Cheng, Y.T. and Li, Z.: Hardness obtained from conical indentations with various cone angles. J. Mater. Res. 15, 2830 (2000).
41.Thompson, A.W.: Effect of grain size on work hardening in nickel. Acta Metall. 25, 83 (1977).
42.Sinclair, C.W., Poole, W.J., and Brechet, Y.: A model for the grain size dependent work hardening of copper. Scr. Mater. 55, 739 (2006).
43.Kozlov, E.V., Koneva, N.A., Trishkina, L.I., Zhdanov, A.N., and Fedorischeva, M.V.: Features of work hardening of polycrystals with nanograins. Mater. Sci. Forum 584, 35 (2008).
44.Franek, A., Kratochvil, J., Saxlova, M., and Sedlacek, R.: Synergetic approach to work hardening of metals. Mater. Sci. Eng., A 137, 119 (1991).
45.Taylor, G.I.: The mechanism of plastic deformation of crystals. Proc. R. Soc. London, Ser. A 145, 362 (1934).
46.Kuhlmann-Wilsdorf, D.: A new theory of workhardening. Trans. Metall. Soc. AIME 224, 1047 (1962).
47.Hertzberg, R.W.: Deformation, and Fracture Mechanics Of Engineering Materials, 3rd ed., (John Wiley & Sons, New York, 1989).
48.Hirth, J.P. and Lothe, J.: Theory of Dislocations, 2nd ed. (Wiley, New York, 1982).
49.Legros, M., Elliott, B.R., Rittner, M.N., Weertman, J.R., and Hemker, K.J.: Microsample tensile testing of nanocrystalline metals. Philos. Mag. A 80, 1017 (2000).
50.Hahn, H., Mondal, P., and Padmanabhan, K.A.: Plastic deformation of nanocrystalline materials. Nanostruct. Mater. 9, 603 (1997).
51.Van Swygenhoven, H., Spaczer, M., and Caro, A.: Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni. Acta Mater. 47, 3117 (1999).
52.Conrad, H.: Grain size dependence of the plastic deformation kinetics in Cu. Mater. Sci. Eng., A 341, 216 (2003).
53.Van Swygenhoven, H., Spaczer, M., Farkas, D., and Caro, A.: The role of grain size and the presence of low and high angle grain boundaries in the deformation mechanism of nanophase Ni: A molecular dynamics computer simulation. Nanostruct. Mater. 12, 323 (1999).
54.Van Swygenhoven, H., Derlet, P.M., and Hasnaoui, A.: Interaction between dislocations and grain boundaries under an indenter—A molecular dynamics simulation. Acta Mater. 52, 2251 (2004).
55.Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., and Gleiter, H.: Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3, 43 (2004).
56.Giallonardo, J., Avramovic-Cingara, G., Palumbo, G., and Erb, U.: Microstrain and growth fault structures in electrodeposited nanocrystalline Ni and Ni-Fe alloys. J. Mater. Sci. 48, 6689 (2013).
57.Mehta, S.C., Smith, D.A., and Erb, U.: Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt% phosphorus alloy. Mater. Sci. Eng., A 204, 227 (1995).
58.Wu, X., Ma, E., and Zhu, Y.T.: Deformation defects in nanocrystalline nickel. J. Mater. Sci. 42, 1427 (2007).
59.Wang, Y.M., Hamza, A.V., and Ma, E.: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86, 24197 (2005).
60.Shan, Z., Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., and Mao, S.X.: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).
61.Gu, C.D., Lian, J.S., Jiang, Q., and Zheng, W.T.: Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D: Appl. Phys. 40, 7440 (2007).
62.Wang, Y.M. and Ma, E.: On the origin of ultrahigh cryogenic strength of nanocrystalline metals. Appl. Phys. Lett. 85, 2750 (2004).
63.Dalla Torre, F., Spatig, P., Schaublin, R., and Victoria, M.: Deformation behaviour and microstructure of nanocrystalline electrodeposited and high pressure torsioned nickel. Acta Mater. 53, 2337 (2005).
64.Wei, Y.J., Su, C., and Anand, L.: A computational study of the mechanical behavior of nanocrystalline fcc metals. Acta Mater. 54, 3177 (2006).
65.Srinivas, M., Malakndaiah, G., and Rama Rao, P.: Fracture toughness of f.c.c. nickel and strain ageing b.c.c. iron in the temperature range 77–773 K. Acta Metall. Mater. 41, 1301 (1993).
66.Sanders, P.G., Youngdahl, C.J., and Weertman, J.R.: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234, 77 (1997).
67.Ebrahimi, F., Bourne, D.G., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343 (1999).
68.Li, H. and Ebrahimi, F.: Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys. Mater. Sci. Eng., A 347, 93 (2003).
69.Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53, 2169 (2005).
70.Lian, J. and Baudelet, B.: A modified Hall-petch relationship for Nanocrysalline materials. Nanostruct. Mater. 2, 415 (1993).
71.Masumura, R.A., Hazzledine, P.M., and Pande, C.S.: Yield stress of fine grained materials. Acta Mater. 46, 4527 (1998).
72.Conrad, H. and Narayan, J.: On the grain size softening in nanocrystalline materials. Scr. Mater. 42, 1025 (2000).
73.Conrad, H. and Narayan, J.: Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50, 5067 (2002).
74.Fan, G.J., Choo, H., Liaw, P.K., and Lavernia, E.J.: A model for the inverse Hall–Petch relation of nanocrystalline materials. Mater. Sci. Eng., A 409, 243 (2005).
75.Carlton, C.E. and Ferreira, P.J.: What is behind the inverse Hall–Petch effect in nanocrystalline materials? Acta Mater. 55, 3749 (2007).
76.Brooks, I., Lin, P., Palumbo, G., Hibbard, G.D., and Erb, U.: Analysis of hardness–tensile strength relationships for electroformed nanocrystalline materials. Mater. Sci. Eng., A 491, 412 (2008).

Keywords

Reduced hardening of nanocrystalline nickel under multiaxial indentation loading

  • Bill T.F. Tang (a1), Yijian Zhou (a1), Thomas Zabev (a1), Iain Brooks (a2) and Uwe Erb (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed