Skip to main content Accessibility help

Recrystallization behavior of a cold rolled Ti–15V–3Sn–3Cr–3Al alloy

  • Aman Gupta (a1), Rajesh Kisni Khatirkar (a1), Tushar Dandekar (a1), Jyoti Shankar Jha (a2) and Sushil Mishra (a2)...


In the present work, a β-Ti alloy (Ti–15V–3Sn–3Cr–3Al) was unidirectionally cold rolled to 80% thickness reduction, followed by recrystallization at two temperatures: (i) 1013 K and (ii) 1053 K. The microstructural developments were studied using light optical microscopy, scanning electron microscopy X-ray peak profile analysis, and electron backscattered diffraction. The bulk texture of deformed and fully recrystallized samples was studied using X-ray diffraction. The deformed microstructures showed the presence of high fraction of shear bands, and these bands were preferentially formed in γ-fiber grains than in the grains with other orientations. Cold rolled β-Ti alloy samples were fully recrystallized in 10 min at 1053 K and in 90 min at 1013 K. Strong α- and γ-fibers were formed after 80% cold rolling, while strong discontinuous γ-fiber (with very strong {111}〈112〉 component) was formed after complete recrystallization. Oriented nucleation was found to be the dominant mechanism for the development of recrystallization texture.


Corresponding author

a)Address all correspondence to this author. e-mail:,


Hide All
1.Weiss, I. and Semiatin, S.L.: Thermomechanical processing of beta titanium alloys—An overview. Mater. Sci. Eng., A 243, 46 (1998).
2.Lütjering, G. and Williams, J.C.: Titanium, 2nd ed. (Springer-Verlag Berlin Heidelberg, Hamburg, 2007).
3.Boyer, R.R.: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng., A 213, 103 (1996).
4.Niinomi, M., Hattori, T., Morikawa, K., Kasuga, T., Suzuki, A., Fukui, H., and Niwa, S.: Development of low rigidity β-type titanium alloy for biomedical applications. Mater. Trans. 43, 2970 (2002).
5.Prasad, S., Ehrensberger, M., Gibson, M.P., Kim, H., and Monaco, E.A.: Biomaterial properties of titanium in dentistry. J. Oral Biosci. 57, 192 (2015).
6.Balasubrahmanyam, V.V. and Prasad, Y.V.R.K.: Deformation behavior of beta titanium alloy Ti–10V–4.5Fe–1.5Al in hot upset forging. Mater. Sci. Eng., A 336, 150 (2002).
7.Ikeda, M., Komatsu, S., Sowa, I., and Niinomi, M.: Aging behavior of the Ti–29Nb–13Ta–4.6Zr new beta alloy for medical implants. Metall. Mater. Trans. A 33, 4 (2002).
8.Wang, K.: The use of titanium for medical applications in the USA. Mater. Sci. Eng., A 213, 8 (1996).
9.Semiatin, S.L., Seetharaman, V., and Weiss, I.: The thermomechanical processing of alpha/beta titanium alloys. JOM 49, 33 (1997).
10.Williams, J.C. and Starke, E.A.: The role of thermomechanical processing in tailoring the properties of aluminum and titanium alloys. in Deformation, Processing and Structure (ASM, Metals Park, Ohio, 1984), pp. 12671276.
11.Hatherly, M. and Humphreys, F.J.: Recrystallization and Related Annealing Phenomena (Amsterdam, Boston: Elsevier, 2004).
12.Verlinden, B., Driver, J., Samajdar, I., and Doherty, R.D.: Thermo-Mechanical Processing of Metallic Materials (Elsevier, New York, NY, 2007).
13.Khatirkar, R.K. and Kumar, S.: Comparison of recrystallization textures in interstitial free and interstitial free high strength steels. Mater. Chem. Phys. 127, 128 (2011).
14.Hutchinson, W.B.: Development and control of annealing textures in low-carbon steels. Int. Mater. Rev. 29, 25 (1984).
15.Ray, R.K., Jonas, J.J., and Hook, R.E.: Cold rolling and annealing textures in low carbon and extra low carbon steels. Int. Mater. Rev. 39, 129 (1994).
16.Inoue, H., Fukushima, S., and Inakazu, N.: Transformation textures in Ti–15V–3Cr–3Sn–3Al alloy sheets. Mater. Trans. 33, 129 (1992).
17.Liu, Y., Liu, S., Fan, H., Deng, C., Cao, L., Wu, X., and Liu, Q.: Crystallographic analysis of nucleation for random orientations in high-purity tantalum. J. Mater. Res. 33, 1755 (2018).
18.Ghaderi, A., Hodgson, P.D., and Barnett, M.R.: Microstructure and texture development in Ti–5Al–5Mo–5V–3Cr alloy during cold rolling and annealing. Key Eng. Mater. 551, 210 (2013).
19.Ling, F., Starke, E.A., and Lefevre, B.G.: Deformation behavior and texture development in beta Ti–V alloys. Metall. Trans. 5, 179 (1974).
20.Gurao, N.P., Ali A, A., and Suwas, S.: Study of texture evolution in metastable beta-Ti alloy as a function of strain path and its effect on alpha transformation texture. Mater. Sci. Eng., A 504, 24 (2009).
21.Yuan, Y., Liu, W., Fu, B., Xu, H., Luo, G., Tang, G., and Jiang, Y.: The effects of electropulsing on the recrystallization behavior of rolled pure tungsten. J. Mater. Res. 27, 2630 (2012).
22.Surthi, K.K., Khatirkar, R.K., and Sapate, S.G.: Effect of mode of rolling on recrystallization kinetics and microstructure evolution in interstitial free high strength steel sheet. ISIJ Int. 53, 356 (2013).
23.Dillamore, I.L., Roberts, J.G., and Bush, A.C.: Occurrence of shear bands in heavily rolled cubic metals. Met. Sci. 13, 73 (1979).
24.Jonas, J.J.: Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process. Technol. 117, 293 (2001).
25.Barnett, M.R. and Jonas, J.J.: Influence of ferrite rolling temperature on grain size and texture in annealed low C and IF steels. ISIJ Int. 37, 706 (1997).
26.Liu, D., Humphreys, A.O., Toroghinezhad, M.R., and Jonas, J.J.: The deformation microstructure and recrystallization behavior of warm rolled steels. ISIJ Int. 42, 751 (2002).
27.Sokolov, B.K., Gubernatorov, V.V., Gervasyeva, I.V., Sbitnev, A.K., and Vladimirov, L.R.: The deformation and shear bands in the Fe–3% Si alloy. Textures Microstruct. 32, 21 (1999).
28.Nasser, S.N., Guo, W.G., and Cheng, J.Y.: Mechanical properties and deformation mechanisms of a commercially pure titanium. Acta Mater. 47, 3705 (1999).
29.Nasser, S.N., Guo, W.G., Nesterenko, V.F., Indrakanti, S.S., and Gu, Y.B.: Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: Experiments and modeling. Mech. Mater. 33, 425 (2001).
30.Cicalè, S., Samajdar, I., Verlinden, B., Abbruzzese, G., and Van Houtte, P.: Development of cold rolled texture and microstructure in a hot band Fe–3% Si steel. ISIJ Int. 42, 770 (2002).
31.Cottrell, A.H.: Theory of dislocations. Prog. Met. Phys. 1, 77 (1949).
32.Doherty, R.D.: The deformed state and nucleation of recrystallization. Met. Sci. 8, 132 (1974).
33.Unnikrishnan, R., Kumar, A., Khatirkar, R.K., Shekhawat, S.K., and Sapate, S.G.: Structural developments in un-stabilized ultra low carbon steel during warm deformation and annealing. Mater. Chem. Phys. 183, 339 (2016).
34.Every, R.L. and Hatherly, M.: Oriented nucleation in low carbon steels. Texture 1, 183 (1974).
35.Hibbard, W.R. and Tully, W.R.: The effect of orientation on the recrystallization kinetics of cold-rolled single crystals. AIME Trans. 221, 336 (1961).
36.Holscher, M., Raabe, D., and Lucke, K.: Rolling and recrystallization textures of bcc steels. Mater. Technol. 62, 567 (1991).
37.Ibe, G. and Lucke, K.: Correlations of orientation during recrystallization of single crystals of an iron-silicon alloy containing 3 percent Si. Arch. für das Eisenhuttenwes. 39, 693 (1968).
38.Lücke, K. and Hölscher, M.: Rolling and recrystallization textures of BCC steels. Textures Microstruct. 14, 585 (1991).
39.Singh, A.K., Bhattacharjee, A., and Gogia, A.K.: Microstructure and texture of rolled and annealed beta titanium alloy Ti–10V–4.5Fe–1.5Al. Mater. Sci. Eng., A 270, 225 (1999).
40.Sander, B. and Raabe, D.: Texture inhomogeneity in a Ti–Nb-based β-titanium alloy after warm rolling and recrystallization. Mater. Sci. Eng., A 479, 236 (2008).
41.Park, Y.B., Lee, D.N., and Gottstein, G.: The evolution of recrystallization textures in body centered cubic metals. Acta Mater. 46, 3371 (1998).
42.Ushioda, K. and Tsuchiya, H.: Fundamentals for controlling the microstructure and properties of cold rolled and continuously annealed sheet steels. Trans. Indian Inst. Met. 66, 655 (2013).
43.Raabe, D., Schlenkert, G., Weisshaupt, H., and Lücke, K.: Texture and microstructure of rolled and annealed tantalum. Mater. Sci. Technol. 10, 299 (2013).
44.Jonas, J.J., Quelennec, X., and Jiang, L.: The Avrami kinetics of dynamic recrystallization. Acta Mater. 57, 2748 (2009).
45.Zhang, C., Zhang, L., Shen, W., and Xia, Y.: The kinetics and microstructural evolution during metadynamic recrystallization of medium carbon Cr–Ni–Mo alloyed steel. J. Mater. Res. 32, 1367 (2017).
46.Handbook, A.S.M.: Metallography and Microstructures (ASM International, Materials Park, 2004).
47.OIM: Analysis Version 7.2 (EDAX Inc., Draper, UT 84020, 2013).
48.Van Houtte, P.: The ‘MTM-FHM’ Software System Version 2 Manual, KU Leuven, Leuven, Belgium (2004).


Recrystallization behavior of a cold rolled Ti–15V–3Sn–3Cr–3Al alloy

  • Aman Gupta (a1), Rajesh Kisni Khatirkar (a1), Tushar Dandekar (a1), Jyoti Shankar Jha (a2) and Sushil Mishra (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed