Skip to main content Accessibility help
×
Home

Recent progress in understanding high temperature dynamical properties and fragility in metallic liquids, and their connection with atomic structure

  • A.K. Gangopadhyay (a1) and K.F. Kelton (a1)

Abstract

The advent of containerless processing techniques has opened the possibility of high quality measurements of equilibrium and metastable liquids. This review focuses on the structure and dynamics of metallic liquids at high temperature. A clear connection between structure, viscosity, and fragility has emerged from recent containerless experiments and molecular dynamics simulation studies. The temperature-dependent changes of liquid structures are smaller for the stronger liquids. The onset of cooperativity usually occurs above the liquidus temperature at a characteristic temperature T A, where the dynamics change from Arrhenius to non-Arrhenius behavior; this is accompanied by the onset of development of more spatially extended structural order in the liquids. Several metrics for fragility, consistent with the traditional fragility parameter, can be developed from the structural and dynamical properties at high temperature. It is becoming increasingly evident from theory and experiments that the fundamental properties that determine fragility are the repulsive part of the interatomic potential and the anharmonicity.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: anup@wuphys.wustl.edu

Footnotes

Hide All

Contributing Editor: Himanshu Jain

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1. Cohen, M.H. and Turnbull, D.: Composition requirements for glass formation in metallic and ionic systems. Nature 189, 131 (1961).
2. Grant, N.J. and Giessen, B.C., eds.: Rapidly Quenched Metals: Second International Conference (MIT Press, Cambridge, Mass, 1976).
3. Koch, C.C.: Materials synthesis by mechanical alloying. Annu. Rev. Mater. Sci. 19, 121 (1989).
4. Nolfi, F.V. Jr.: Phase Transformations During Irradiation (Applied Science Publishers, London, 1983).
5. Bhat, M.H., Molinero, V., Soignard, E., Solomon, V.C., Sastry, S., Yarger, J.L., and Angell, C.A.: Vitrification of a monatomic metallic liquid. Nature 448, 787 (2007).
6. Magnan, H., Chandesris, D., Rossi, G., Jezequel, G., Hricovini, K., and Lecante, J.: Determination of local order in amorphous cobalt films. Phys. Rev. B 40, 9989 (1989).
7. Kim, Y-W., Lin, H-M., and Kelly, T.F.: Amorphous solidification of pure metals in submicron spheres. Acta Metall. 37, 247 (1989).
8. Zhong, L., Wang, J., Sheng, H., Zhang, Z., and Mao, S.X.: Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512, 177 (2014).
9. Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).
10. Durbin, S.D. and Fehrer, G.: Protein crystallization. Ann. Rev. Phys. Chem. 47, 171 (1996).
11. Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).
12. Kui, H.W., Greer, A.L., and Turnbull, D.: Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 45, 615 (1984).
13. Inoue, A., Matsumoto, N., and Masumoto, T.: Al–Ni–Co–Y amorphous alloys with high mechanical strengths, wide supercooled liquid regions and large glass-forming capacity. Mater. Trans. JIM 31, 493 (1990).
14. Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 . Appl. Phys. Lett. 63, 2342 (1993).
15. Trexler, M.M. and Thadhani, N.N.: Mechanical properties of bulk metallic glasses. Prog. Mater. Sci. 55, 759 (2010).
16. Scully, J.R., Gebert, A., and Payer, J.H.: Corrosion and related mechanical properties of bulk metallic glasses. J. Mater. Res. 22, 302 (2007).
17. McHenry, M.E., Willard, M.A., and Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291 (1999).
18. Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).
19. Inoue, A. and Takeuchi, A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).
20. Gangopadhyay, A.K., Lee, G.W., Kelton, K.F., Rogers, J.R., Goldman, A.I., Robinson, D.S., Rathz, T.J., and Hyers, R.W.: Beamline electrostatic levitator for in situ high energy X-ray diffraction studies of levitated solids and liquids. Rev. Sci. Instrum. 76, 073901 (2005).
21. Mauro, N.A. and Kelton, K.F.: A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy X-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011).
22. Rhim, W-K., Chung, S.K., Barber, D., Man, K.F., Gutt, G., Rulison, A., and Spjut, R.E.: An electrostatic levitator for high-temperature containerless materials processing in l g. Rev. Sci. Instrum. 64, 2961 (1993).
23. Gao, L., Shi, Z., Li, D., Zhang, G., Yang, Y., Mclean, A., and Chattopadhyay, K.: Applications of electromagnetic levitation and development of mathematical models: A review of the last 15 years (2000 to 2015). Metall. Mater. Trans. B 47, 537 (2016).
24. Weber, J.K.R., Hampton, D.S., Morkloy, D.R., Rey, C.A., Zatarski, M.M., and Nordine, P.C.: Aero-acoustic levitation: A method for containerless liquid-phase processing at high temperatures. Rev. Sci. Instrum. 65, 456 (2005).
25. Kelton, K.F.: Kinetic and structural fragility—A correlation between structures and dynamics in metallic liquids and glasses. J. Phys.: Condens. Matter 29, 023002 (2017).
26. Martinez, L-M. and Angell, C.A.: A thermodynamic connection to the fragility of glass-forming liquids. Nature 410, 663 (2001).
27. Angell, C.A.: Strong and fragile liquids. In Relaxations in Complex Systems, Ngai, K.L. and Wright, G.B., eds. (U.S. GPO, Washington, D.C., 1985); p. 3.
28. Blodgett, M.E., Egami, T., Nussinov, Z., and Kelton, K.F.: Proposal for universality in the viscosity of metallic liquids. Sci. Rep. 5, 13837 (2015).
29. Sokolov, A.P., Kisliuk, A., Quitmann, D., Kudlik, A., and Rossler, E.: The dynamics of strong and fragile glass formers: Vibrational and relaxation contributions. J. Non-Cryst. Solids 172–174, 138 (1994).
30. Vogel, H.: The temperature dependence law of the viscosity of fluids. Z. Phys. 22, 645 (1921).
31. Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).
32. Tammann, G. and Hesse, W.Z.: The temperature dependence of viscosity of undercooled liquids. Anorg. Allgem. Chem. 156, 245 (1926).
33. Richert, R. and Angell, C.A.: Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016 (1998).
34. Hecksher, T., Nielsen, A.I., Olsen, N.B., and Dyre, J.C.: Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat. Phys. 4, 737 (2008).
35. Mauro, J.C., Yueb, Y., Ellisona, A.J., Gupta, P.K., and Allan, D.C.: Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. U. S. A. 24, 19780 (2009).
36. Gibbs, J.H.: Nature of the glass transition in polymers. J. Chem. Phys. 25, 185 (1956).
37. Adam, G. and Gibbs, J.H.: On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965).
38. Goldstein, M.: Viscous liquids and the glass transition. IV. Thermodynamic equations and the transition. J. Phys. Chem. 77, 667 (1973).
39. Johari, G.P.: An equilibrium supercooled liquid’s entropy and enthalpy in the Kauzmann and the third law extrapolations, and a proposed experimental resolution. J. Chem. Phys. 113, 751 (2000).
40. Johari, G.P.: The entropy loss on supercooling a liquid and anharmonic contributions. J. Chem. Phys. 116, 2043 (2002).
41. Ito, K., Moynihan, C.T., and Angell, C.A.: Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492 (1999).
42. Kauzmann, W.: The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948).
43. Tanaka, H.: Relation between thermodynamics and kinetics of glass-forming liquids. Phys. Rev. Lett. 90, 055701 (2003).
44. Tanaka, H.: Possible resolution of the Kauzmann paradox in supercooled liquids. Phys. Rev. E 68, 011505 (2003).
45. Stillinger, F.H., Debenedetti, P.G., and Truskett, T.M.: The Kauzmann paradox revisited. J. Phys. Chem. B 105, 11809 (2001).
46. Wang, L-M., Velikov, V., and Angell, C.A.: Direct determination of kinetic fragility indices of glass forming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities. J. Chem. Phys. 117, 10184 (2002).
47. Huang, D. and McKenna, G.B.: New insights into the fragility dilemma in liquids. J. Chem. Phys. 111, 5621 (2001).
48. Wang, L-M., Angell, C.A., and Richert, R.: Fragility and thermodynamics in nonpolymeric glass-forming liquids. J. Chem. Phys. 125, 074505 (2006).
49. Xia, X. and Wolynes, P.G.: Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl. Acad. Sci. U. S. A. 97, 2990 (2000).
50. Novikov, V.N. and Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).
51. Egry, I., Lohofer, G., Seyhan, I., Schneider, S., and Feuerbacher, B.: Viscosity of eutectic Pd78Cu6Si16 measured by the oscillating drop technique in microgravity. Appl. Phys. Lett. 73, 462 (1998).
52. Mukherjee, S., Schroers, J., Zhou, Z., Johnson, W.L., and Rhim, W-K.: Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Mater. 52, 3689 (2004).
53. Fan, G.J., Freels, M., Choo, H., Liaw, P.K., Li, J.J.Z., Rhim, W-K., Johnson, W.L., Yu, P., and Wang, W.H.: Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Appl. Phys. Lett. 89, 241917 (2006).
54. Holland-Moritz, D., Stüber, S., Hartmann, H., Unruh, T., Hansen, T., and Meyer, A.: Structure and dynamics of liquid Ni36Zr64 studied by neutron scattering. Phys. Rev. B 79, 064204 (2009).
55. Brillo, J., Pommrich, A.I., and Meyer, A.: Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys. Rev. Lett. 107, 165902 (2011).
56. Yuan, C.C., Yang, F., Kargl, F., Holland-Moritz, D., Simeoni, G.G., and Meyer, A.: Atomic dynamics in Zr–(Co,Ni)–Al metallic glass-forming liquids. Phys. Rev. B 91, 214203 (2015).
57. Rhim, W-K., Ohsaka, K., Paradis, P-F., and Spjut, R.E.: Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796 (1999).
58. Gangopadhyay, A.K., Pueblo, C.E., Johnson, M.L., Dai, R., Aschcraft, R., Van Hoesen, D., Sellers, M., and Kelton, K.F.: Connection of fragility of metallic liquids with cohesive energy and high temperature structural evolution. J. Chem. Phys. 146, 154506 (2017).
59. Sipp, A., Bottinga, Y., and Richet, P.: New viscosity data for 3D network liquids and new correlations between old parameters. J. Non-Cryst. Solids 288, 166 (2001).
60. Weingartner, N.B., Pueblo, C., Nogueira, F.S., Kelton, K.F., and Nussinov, Z.: A phase space approach to supercooled liquids and a universal collapse of their viscosity. Front. Mater. 3, 50 (2016).
61. Tsang, K.H. and Kui, H.W.: Viscosity of molten Pd82Si18 and the scaling of viscosities of glass forming systems. J. Appl. Phys. 72, 93 (1992).
62. Schroeter, K. and Donth, E.: Viscosity and shear response at the dynamic glass transition of glycerol. J. Chem. Phys. 113, 9101 (2000).
63. Parks, G.S., Barton, L.E., Spaght, M.E., and Richardson, J.W.: The viscosity of undercooled liquid glucose. J. Appl. Phys. 5, 193 (1934).
64. Laughlin, W.T. and Uhlmann, D.R.: Viscous flow in simple organic fluids. J. Phys. Chem. 76, 2317 (1972).
65. Russew, K., Stojanova, L., Yankova, S., Fazakas, E., and Varga, L.K.: Thermal behavior and melt fragility number of Cu100−x Zr x glassy alloys in terms of crystallization and viscous flow. J. Phys.: Conf. Ser. 144, 012094 (2009).
66. Johnson, W.L., Na, J.H., and Demetrieu, M.D.: Quantifying the origin of metallic glass formation. Nat. Commun. 7, 10313 (2016).
67. Mallamace, F., Branca, C., Corsaro, C., Leone, N., Spooren, J., Chen, S-H., and Stanley, H.E.: Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. U. S. A. 107, 22457 (2010).
68. Schmidtke, B., Petzold, N., Kahlau, R., and Rössler, E.A.: Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature. J. Chem. Phys. 139, 084504 (2013).
69. Iwashita, T., Nicholson, D.M., and Egami, T.: Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110, 205504 (2013).
70. Hu, Y.C., Li, F.X., Li, M.Z., Bai, H.Y., and Wang, W.H.: Structural signatures evidenced in dynamic crossover phenomena in metallic glass-forming liquids. J. Appl. Phys. 119, 205108 (2016).
71. Fan, Y., Iwashita, T., and Egami, T.: Crossover from localized to cascade relaxations in metallic glasses. Phys. Rev. Lett. 115, 045501 (2015).
72. Jaiswal, A., Egami, T., Kelton, K.F., Schweizer, K.S., and Zhang, Y.: Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids. Phys. Rev. Lett. 117, 205701 (2016).
73. Sastry, S., Debenedetti, P.G., and Stillinger, F.H.: Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 393, 554 (1998).
74. Garrahan, J.P. and Chandler, D.: Coarse-grained microscopic model of glass formers. Proc. Natl. Acad. Sci. U. S. A. 100, 9710 (2003).
75. Gotze, W. and Sjogren, L.: Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55, 241 (1992).
76. Xua, Y., Petrika, N.G., Scott Smith, R., Kaya, B.D., and Kimmela, G.A.: Growth rate of supercooled ice and the diffusivity of supercooled water from 126 to 262 K. Proc. Natl. Acad. Sci. U. S. A. 113, 14921 (2016).
77. McMillan, P.F., Wilson, M., Wilding, M.C., Daisenberger, D., Mezouar, M., and Greaves, G.N.: Polyamorphism and liquid–liquid phase transitions: Challenges for experiment and theory. J. Phys.: Condens. Matter 19, 415101 (2007).
78. Zhang, C., Hu, L., Yue, Y., and Mauro, J.C.: Fragile to strong transition in metallic glass-forming liquids. J. Chem. Phys. 133, 014508 (2010).
79. Georgarakis, K., Hennet, L., Evangelakis, G.A., Antonowicz, J., Bokas, G.B., and Honkimaki, V.: Probing the structure of a liquid metal during vitrification. Acta Mater. 87, 174 (2015).
80. Stolpe, M., Jonas, I., Wei, S., Evenson, Z., Hembree, W., Yang, F., Meyer, A., and Busch, R.: Structural changes during a liquid–liquid transition in the deeply undercooled Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glass forming melt. Phys. Rev. B 93, 014201 (2016).
81. Li, L., Schroers, J., and Wu, Y.: Crossover of microscopic dynamics in metallic supercooled liquid observed by NMR. Phys. Rev. Lett. 91, 265502 (2003).
82. Lan, S., Blodgett, M., Kelton, K.F., Ma, J.L., Fan, J., and Wang, X-L.: Structural crossover in a supercooled metallic liquid and the link to a liquid-to-liquid phase transition. Appl. Phys. Lett. 108, 211907 (2016).
83. Bernal, J.D.: The structure of liquids. Proc. R. Soc. London, Ser. A 280, 299 (1964).
84. Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).
85. Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J.M., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).
86. Ma, E.: Turning order into disorder. Nat. Mater. 14, 547 (2015).
87. Cheng, Y.Q., Sheng, H.W., and Ma, E.: Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys. Rev. B 78, 014207 (2008).
88. Ding, J., Cheng, Y-Q., and Ma, E.: Full icosahedra dominate local order in Cu64Zr36 metallic glass and supercooled liquid. Acta Mater. 69, 343 (2014).
89. Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., and Robinson, D.S.: First X-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).
90. Lee, G.W., Gangopadhyay, A.K., Kelton, K.F., Hyers, R.W., Rathz, T.J., Rogers, J.R., and Robinson, D.S.: Difference in icosahedral short-range order in early and late transition metal liquids. Phys. Rev. Lett. 93, 037802 (2004).
91. Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, D.S., Goldman, A.I., and Kelton, K.F.: Local structure of equilibrium and supercooled Ti–Zr–Ni liquids. Phys. Rev. B 77, 184102 (2008).
92. Wessels, V., Gangopadhyay, A.K., Sahu, K.K., Hyers, R.W., Canepari, S.M., Rogers, J.R., Kramer, M.J., Goldman, A.I., Robinson, D., Lee, J.W., Morris, J.R., and Kelton, K.F.: Rapid chemical and topological ordering in supercooled liquid Cu46Zr54 . Phys. Rev. B 83, 094116 (2011).
93. Gangopadhyay, A.K., Blodgett, M.E., Johnson, M.L., Vogt, A.J., Mauro, N.A., and Kelton, K.F.: Thermal expansion measurements by X-ray scattering and breakdown of Ehrenfest’s relation in alloy liquids. Appl. Phys. Lett. 104, 191907 (2014).
94. Gangopadhyay, A.K., Blodgett, M.E., Johnson, M.L., McKnight, J., Wessels, V., Vogt, A.J., Mauro, N.A., Bendert, J.C., Soklaski, R., Yang, L., and Kelton, K.F.: Anomalous thermal contraction of the first coordination shell in metallic alloy liquids. J. Chem. Phys. 140, 044505 (2014).
95. Mauro, N.A., Johnson, M.L., Bendert, J.C., and Kelton, K.F.: Structural evolution in Ni–Nb and Ni–Nb–Ta liquids and glasses—A measure of liquid fragility. J. Non-Cryst. Solids 362, 237 (2013).
96. Mauro, N.A., Vogt, A.J., Johnson, M.L., Bendert, J.C., and Kelton, K.F.: Anomalous structural evolution in Cu50Zr50 glass-forming liquids. Appl. Phys. Lett. 103, 021904 (2013).
97. Mauro, N.A., Vogt, A.J., Johnson, M.L., Bendert, J.C., Soklaski, R., Yang, L., and Kelton, K.F.: Anomalous structural evolution and liquid fragility signatures in Cu–Zr and Cu–Hf liquids and glasses. Acta Mater. 61, 7411 (2013).
98. Mauro, N.A., Blodgett, M., Johnson, M.L., Vogt, A.J., and Kelton, K.F.: A structural signature of liquid fragility. Nat. Commun. 5, 4616 (2014).
99. Louzguine-Luzgin, D.V., Belosludov, R., Yavari, A.R., Georgarakis, K., Vaughan, G., Kawazoe, Y., Egami, T., and Inoue, A.: Structural basis for supercooled liquid fragility established by synchrotron-radiation method and computer simulation. J. Appl. Phys. 110, 043519 (2011).
100. Wei, S., Stolpe, M., Gross, O., Evenson, Z., Gallino, I., Hembree, W., Bednarcik, J., Kruzic, J., and Busch, R.: Linking structure to fragility in bulk metallic glass-forming liquids. Appl. Phys. Lett. 106, 181901 (2015).
101. Ma, D., Stoica, A.D., and Wang, X-L.: Power-law scaling and fractal nature of medium-range order in metallic glasses. Nat. Mater. 8, 30 (2009).
102. Zenga, Q., Linb, Y., Liue, Y., Zenga, Z., Shib, C.Y., Zhang, B., Loua, H., Sinogeikin, S.V., Kono, Y., Bensong, C.K., Park, C., Yang, W., Wang, W., Sheng, H., Mao, H-K., and Mao, W.L.: General 2.5 power law of metallic glasses. Proc. Natl. Acad. Sci. U. S. A. 113, 1714 (2016).
103. Chirawatkul, P., Zeidler, A., Salmon, P.S., Takeda, S., Kawakita, Y., Usuki, T., and Fischer, H.E.: Structure of eutectic liquids in the Au–Si, Au–Ge, and Ag–Ge binary systems by neutron diffraction. Phys. Rev. B 83, 014203 (2011).
104. Lou, H., Wang, X., Cao, Q., Zhang, D., Zhang, J., Hu, T., Mao, H-K., and Jiang, J-Z.: Negative expansions of interatomic distances in metallic melts. Proc. Natl. Acad. Sci. U. S. A. 110, 10068 (2013).
105. Ding, J., Xu, M., Guan, P.F., Deng, S.W., Cheng, Y.Q., and Ma, E.: Temperature effects on atomic pair distribution functions of melts. J. Chem. Phys. 140, 064501 (2014).
106. Poulsen, H., Wert, J.A., Neuefeind, J., Honkimaki, V., and Daymond, M.: Measuring strain distributions in amorphous materials. Nat. Mater. 4, 33 (2005).
107. Hufnagel, T.C. and Ott, R.T.: Structural aspects of elastic deformation of a metallic glass. Phys. Rev. B 73, 064204 (2006).
108. Dmowski, W., Iwashita, T., Chuang, C-P., Almer, J., and Egami, T.: Elastic heterogeneity in metallic glasses. Phys. Rev. Lett. 105, 205502 (2010).
109. Baldi, G., Zanatta, M., Gilioli, E., Milman, V., Refson, K., Wehinger, B., Winkler, B., Fontana, A., and Monaco, G.: Emergence of crystal-like atomic dynamics in glasses at the nanometer scale. Phys. Rev. Lett. 110, 185503 (2013).
110. Ketov, S.V., Sun, Y.H., Nachum, S., Lu, Z., Checchi, A., Beraldin, A.R., Bai, H.Y., Wang, W.H., Louzguine-Luzgin, D.V., Carpenter, M.A., and Greer, A.L.: Rejuvenation of metallic glasses by non-affine thermal strain. Nature 524, 200 (2015).
111. McGreevy, R.L. and Wicks, J.D.: X-ray, electron and neutron diffraction. RMC: Modelling neutron diffraction, X-ray diffraction and EXAFS data simultaneously for amorphous materials. J. Non-Cryst. Solids 192–193, 23 (1995).
112. McGreevy, R.L.: Reverse Monte Carlo modelling. J. Phys.: Condens. Matter 13, R877 (2001).
113. Cheng, Y-Q. and Ma, E.: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).
114. Jakse, N. and Pasturel, A.: Ab initio molecular dynamics simulations of local structure of supercooled Ni. J. Chem. Phys. 120, 6124 (2004).
115. Hao, S.G., Kramer, M.J., Wang, C.Z., Ho, K.M., Nandi, S., Kreyssig, A., Goldman, A.I., Wessels, V., Sahu, K.K., Kelton, K.F., Hyers, R.W., Canepari, S.M., and Rogers, J.R.: Experimental and ab initio structural studies of liquid Zr2Ni. Phys. Rev. B 79, 104206 (2009).
116. Zhang, Y., Mendelev, M.I., Wang, C.Z., and Kelton, K.F.: Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy. J. Chem. Phys. 145, 204505 (2016).
117. Soklaski, R., Nussinov, Z., Markow, Z., Kelton, K.F., and Yang, L.: Connectivity of icosahedral network and a dramatically growing static length scale in Cu–Zr binary metallic glasses. Phys. Rev. B 87, 184203 (2013).
118. Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R., and Herlach, D.M.: Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).
119. Cheng, Y.Q., Cao, A.J., and Ma, E.: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).
120. Ding, J., Cheng, Y.Q., and Ma, E.: Correlating local structure with inhomogeneous elastic deformation in a metallic glass. Appl. Phys. Lett. 101, 121917 (2012).
121. Iwashita, T. and Egami, T.: Atomic mechanism of flow in simple liquids under shear. Phys. Rev. Lett. 108, 196001 (2012).
122. Eyring, H.: Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283 (1936).
123. Soklaski, R., Tran, V., Nussinov, Z., Kelton, K.F., and Yang, L.: A locally preferred structure characterizes all dynamical regimes of a supercooled liquid. Philos. Mag. 96, 1212 (2016).
124. Sastry, S.: The relationship between fragility, configurational entropy and potential energy landscape of glass-forming liquids. Nature 409, 164 (2001).
125. Moreno, A.J., Buldyrev, S.V., La Nave, E., Saika-Voivod, I., Sciortino, F., Tartaglia, P., and Zaccarelli, E.: Energy landscape of a simple model for strong liquids. Phys. Rev. Lett. 95, 157802 (2005).
126. Debenedetti, P.G., Truskett, T.M., and Lewis, C.P.: Theory of supercooled liquids and glasses: Energy landscape and statistical geometry perspectives. Adv. Chem. Eng. 28, 21 (2001).
127. Stillinger, F.H.: A topological view of supercooled liquids and glass formation. Science 267, 1935 (1995).
128. Born, M. and Green, H.S.: A general kinetic theory of liquids. III. Dynamical properties. Proc. R. Soc. London, Ser. A 190, 455 (1947).
129. Wallace, D.C.: Entropy of liquid metals. J. Chem. Phys. 87, 2282 (1987).
130. Baranyai, A. and Evans, D.J.: Direct entropy calculation from computer simulation of liquids. Phys. Rev. A 40, 3817 (1989).
131. Wallace, D.C.: Entropy of liquid metals. Proc. R. Soc. London, Ser. A 433, 615 (1991).
132. Dzugutov, M.: A universal scaling law for atomic diffusion in condensed matter. Nature 381, 137 (1996).
133. Bartsch, A., Rätzke, K., Meyer, A., and Faupel, F.: Dynamic arrest in multicomponent glass-forming alloys. Phys. Rev. Lett. 104, 195901 (2010).
134. Swallen, S.F., Traynor, K., McMahon, R.J., Ediger, M.D., and Mates, T.E.: Self-diffusion of supercooled tris-naphthylbenzene. J. Chem. Phys. 113, 4600 (2009).
135. Laird, B.B. and Haymet, A.D.J.: Calculation of the entropy from multiparticle correlation functions. Phys. Rev. A 45, 5680 (1992).
136. Coslovich, D.: Static triplet correlations in glass-forming liquids: A molecular dynamics study. J. Chem. Phys. 138, 12A539 (2013).
137. Berthier, L. and Coslovich, D.: Novel approach to numerical measurements of the configurational entropy in supercooled liquids. Proc. Natl. Acad. Sci. U. S. A. 111, 11668 (2014).
138. Yokoyama, I. and Arai, T.: Correlation entropy and its relation to properties of liquid iron, cobalt, and nickel. J. Non-Cryst. Solids 293–295, 806 (2001).
139. Paradis, P-F. and Rhim, W-K.: Thermophysical properties of zirconium at high temperature. J. Mater. Res. 14, 3713 (1999).
140. Mountain, R.D. and Raveché, H.J.: Entropy and molecular correlation functions in open systems. II. Two and three body correlations. J. Chem. Phys. 55, 2250 (1971).
141. de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K.: Cohesion in Metals-Transition Metal Alloys (North-Holland, Amsterdam, 1988).
142. Scopigno, T., Ruocco, G., and Sette, F.: Microscopic dynamics in liquid metals: The experimental point of view. Rev. Mod. Phys. 77, 881 (2005).
143. Faupel, F., Frank, W., Macht, M-P., Mehrer, H., Naundorf, V., Raetzke, K., Schober, H.R., Sharma, S.K., and Teichler, H.: Diffusion in metallic glasses and supercooled melts. Rev. Mod. Phys. 75, 237 (2003).
144. Berthier, L., Biroli, G., Bouchaud, G-P., Cipelletti, L., El Masri, D., Hote, D.L., Ladieu, F., and Pierno, M.: Direct experimental evidence for a growing length scale accompanying the glass transition. Science 310, 1797 (2005).
145. Mittal, J., Errington, J.R., and Truskett, T.M.: Relationship between thermodynamics and dynamics of supercooled liquids. J. Chem. Phys. 125, 076102 (2006).
146. Xu, W-S. and Freed, K.F.: Influence of cohesive energy and chain stiffness on polymer glass formation. Macromolecules 47, 6990 (2014).
147. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. London 157, 49 (1867).
148. Nemilov, S.V.: Interrelation between shear modulus and the molecular parameters of viscous flow for glass forming liquids. J. Non-Cryst. Solids 352, 2715 (2006).
149. Dyre, J.C.: Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 78, 953 (2006).
150. Kittel, C.: Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996); p. 57.
151. Slater, J.C.: Compressibility of the alkali halides. Phys. Rev. 23, 488 (1924).
152. Bennett, C.H., Polk, D.E., and Turnbull, D.: Role of composition in metallic glass formation. Acta Metall. 19, 1295 (1971).
153. Bordat, P., Affouard, F., Descamps, M., and Ngai, K.L.: Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Phys. Rev. Lett. 93, 105502 (2004).
154. Sengupta, S., Vasconcelos, F., Affouard, F., and Sastry, S.: Dependence of the fragility of a glass former on the softness of interparticle interactions. J. Chem. Phys. 135, 194503 (2011).
155. Shi, Z., Debenedetti, P.G., Stillinger, F.H., and Ginart, P.: Structure, dynamics, and thermodynamics of a family of potentials with tunable softness. J. Chem. Phys. 135, 084513 (2011).
156. Michele, C. De, Sciortino, F., and Coniglio, A.: Scaling in soft spheres: Fragility invariance on the repulsive potential softness. J. Phys.: Condens. Matter 16, L489 (2004).
157. Mattsson, J., Wyss, H.M., Fernandez-Nieves, A., Miyazaki, K., Hu, Z., Reichman, D.R., and Weitz, D.A.: Soft colloids make strong glasses. Nature 462, 83 (2009).
158. Casalini, R.: The fragility of liquids and colloids and its relation to the softness of the potential. J. Chem. Phys. 137, 204904 (2012).
159. Casalini, R. and Roland, C.M.: Thermodynamical scaling of the glass transition dynamics. Phys. Rev. E 69, 062501 (2004).
160. Casalini, R. and Roland, C.M.: Why liquids are fragile. Phys. Rev. E 72, 031503 (2005).
161. Voylov, D.N., Griffin, P.J., Mercado, B., Keum, J.K., Nakanishi, M., Novikov, V.N., and Sokolov, A.P.: Correlation between temperature variations of static and dynamic properties in glass-forming liquids. Phys. Rev. E 94, 060603(R) (2016).
162. Dai, R. and Ashcraft, R.: Private communication.
163. Wei, S., Evenson, Z., Gallino, I., and Busch, R.: The impact of fragility on the calorimetric glass transition in bulk metallic glasses. Intermetal 55, 138 (2014).
164. Evenson, Z., Gallino, I., and Busch, R.: The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses. J. Appl. Phys. 107, 123529 (2010).
165. Lu, I-R., Wilde, G., Goerler, G.P., and Willnecker, R.: Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 (1999).
166. Wilde, G., Goerler, G.P., Willnecker, R., and Fecht, H-J.: Calorimetric, thermomechanical, and rheological characterizations of bulk glass-forming Pd40Ni40P20 . J. Appl. Phys. 87, 1141 (2000).
167. Fan, G.J., Lavernia, E.J., Wunderlich, R.K., and Fecht, H-J.: The relationship between kinetic and thermodynamic fragilities in metallic glassforming liquids. Philos. Mag. 84, 2471 (2004).
168. Fontana, G.D. and Battezzati, L.: Thermodynamic and dynamic fragility in metallic glass-formers. Acta Mater. 61, 2260 (2013).
169. Ding, J., Cheng, Y-Q., Sheng, H., and Ma, E.: Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids. Phys. Rev. B 85, 060201(R) (2012).
170. Ding, J., Cheng, Y-Q., and Ma, E.: Charge-transfer-enhanced prism-type local order in amorphous Mg65Cu25Y10: Short-to-medium-range structural evolution underlying liquid fragility and heat capacity. Acta Mater. 61, 3130 (2013).
171. Krausser, J., Samwer, K.H., and Zaccone, A.: Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc. Natl. Acad. Sci. U. S. A. 112, 13762 (2015).

Keywords

Recent progress in understanding high temperature dynamical properties and fragility in metallic liquids, and their connection with atomic structure

  • A.K. Gangopadhyay (a1) and K.F. Kelton (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed