Skip to main content Accessibility help
×
Home

Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods

  • Waldemir Moura de Carvalho (a1) and Flavio Leandro Souza (a1)

Abstract

Photoelectrochemical cells offer a more elegant, clean, and sustainable way to store solar energy as chemical energy through the splitting of water into its primitive form (H2 and O2). Among many metal oxides pointed as candidates for this application, the fundamental characteristics of hematite (α-Fe2O3), such as abundance, excellent chemical stability in an aqueous environment, and favorable optical band gap, emerged as a promising photoanode. Although attractive, the poor optoelectronic properties necessitate a large application of overpotential for split water assisted by solar irradiation, limiting the high performance of this material. Since the electrode was built using materials in nanoscale, significant advances were achieved. This review highlights new insights and recent progress in the use of a purpose-built material process to build hematite electrodes for improving photocatalytic activity. In addition, reduction on the required overpotential by effective control-treatment of morphology and surface of vertically aligned hematite nanorods will be addressed. An interesting set of results were also discussed revisiting a novel strategy recently presented in the literature and complementary advances was illustrated. These latest efforts aid in pointing out the challenges or obstacles to be overcome using this morphology and in defining new opportunities.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: fleandro.ufabc@gmail.com, flavio.souza@pq.cnpq.br

References

Hide All
1. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972).
2. Bard, A.J., Whitesides, G.M., Zare, R.N., and McLafferty, F.W.: Holy grails of chemistry. Acc. Chem. Res. 28(3), 91 (1995).
3. Mao, S.S., Shen, S., and Guo, L.: Nanomaterials for renewable hydrogen production, storage and utilization. Prog. Nat. Sci. 22(6), 522 (2012).
4. Sivula, K., Le Formal, F., and Grätzel, M.: Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4), 432 (2011).
5. Tachibana, Y., Vayssieres, L., and Durrant, J.R.: Artificial photosynthesis for solar water-splitting. Nat. Photon. 6(8), 511 (2012).
6. Liu, X., Wang, F., and Wang, Q.: Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 14(22), 7894 (2012).
7. Baeck, S.H., Choi, K.S., Jaramillo, T.F., Stucky, G.D., and McFarland, E.W.: Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15(15), 1269 (2003).
8. Gonçalves, R.H., Leite, L.D.T., and Leite, E.R.: Colloidal WO3 nanowires as a versatile route to prepare a photoanode for solar water splitting. ChemSusChem 5(12), 2341 (2012).
9. Zhang, X., Lu, X., Shen, Y., Han, J., Yuan, L., Gong, L., Xu, Z., Bai, X., Wei, M., Tong, Y., Gao, Y., Chen, J., Zhou, J., and Wang, Z.L.: Three-dimensional WO3 nanostructures on carbon paper: Photoelectrochemical property and visible light driven photocatalysis. Chem. Commun. 47(20), 5804 (2011).
10. Wang, H., Deutsch, T., and Turner, J.A.: Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155(5), F91 (2008).
11. Cowan, A.J., Tang, J., Leng, W., Durrant, J.R., and Klug, D.R.: Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114(9), 4208 (2010).
12. Ni, M., Leung, M.K.H., Leung, D.Y.C., and Sumathy, K.: A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. J. Renewable Sustainable Energy 11(3), 401 (2007).
13. Klahr, B., Gimenez, S., Fabregat-Santiago, F., Hamann, T., and Bisquert, J.: Water oxidation at hematite photoelectrodes: The role of surface states. J. Am. Chem. Soc. 134(9), 4294 (2012).
14. Hamann, T.W.: Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 41(26), 7830 (2012).
15. Hagfeldt, A. and Grätzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95(1), 49 (1995).
16. Sun, J., Zhong, D.K., and Gamelin, D.R.: Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ. Sci. 3(9), 1252 (2010).
17. van de Krol, R., Liang, Y., and Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18(20), 2311 (2008).
18. Dinca, M., Surendranath, Y., and Nocera, D.G.: Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U.S.A. 107(23), 10337 (2010).
19. Andrade, L., Lopes, T., Ribeiro, H.A., and Mendes, A.: Transient phenomenological modeling of photoelectrochemical cells for water splitting – application to undoped hematite electrodes. Int. J. Hydrogen Energy 36(1), 175 (2011).
20. Maeda, K.: Photocatalytic water splitting using semiconductor particles: History, and recent developments. J. Photochem. Photobiol., C 12(4), 237 (2011).
21. Li, Y. and Zhang, J.Z.: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photon. Rev. 4(4), 517 (2009).
22. Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., and Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18(20), 2298 (2008).
23. Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., and Glasscock, J.A.: Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31(14), 1999 (2006).
24. Hardee, K.L.: Semiconductor electrodes: V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. J. Electrochem. Soc. 123(7), 1024 (1976).
25. Kennedy, J.H.: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125(5), 709 (1978).
26. Dare-Edwards, M.P., Goodenough, J.B., Hamnett, A., and Trevellick, P.R.: Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 79(9), 2027 (1983).
27. Eggleston, C.M.: Geochemistry. Toward new uses for hematite. Science 320(5873), 184 (2008).
28. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110(11), 6446 (2010).
29. Klahr, B.M. and Hamann, T.W.: Voltage dependent photocurrent of thin film hematite electrodes. Appl. Phys. Lett. 99(6), 063508 (2011).
30. Katz, M.J., Riha, S.C., Jeong, N.C., Martinson, A.B.F., Farha, O.K., and Hupp, J.T.: Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 256(21–22), 2521 (2012).
31. Iordanova, N., Dupuis, M., and Rosso, K.M.: Charge transport in metal oxides: A theoretical study of hematite alpha-Fe2O3 . J. Chem. Phys. 122(14), 144305 (2005).
32. Shimizu, K., Lasia, A., and Boily, J-F.: Electrochemical impedance study of the hematite/water interface. Langmuir 28(20), 7914 (2012).
33. Liu, J., Shahid, M., Ko, Y.S., Kim, E., Ahn, T.K., Park, J.H., and Kwon, Y.U.: Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 15(24), 9775 (2013).
34. Brillet, J., Grätzel, M., and Sivula, K.: Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 10(10), 4155 (2010).
35. Gonçalves, R.H., Lima, B.H.R., and Leite, E.R.: Magnetite colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 133(15), 6012 (2011).
36. Ling, Y., Wang, G., Wheeler, D.A., Zhang, J.Z., and Li, Y.: Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 11(5), 2119 (2011).
37. Kronawitter, C.X., Zegkinoglou, I., Rogero, C., Guo, J.H., Mao, S.S., Himpsel, F.J., and Vayssieres, L.: On the interfacial electronic structure origin of efficiency enhancement in hematite photoanodes. J. Phys. Chem. C 116(43), 22780 (2012).
38. Souza, F.L., Lopes, K.P., Nascente, P.A.P., and Leite, E.R.: Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energy Mater. Sol. Cells 93, 362 (2009).
39. Cesar, I., Kay, A., Gonzalez Martinez, J.A., and Grätzel, M.: Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128(14), 4582 (2006).
40. Kay, A., Cesar, I., and Grätzel, M.: New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128(49), 15714 (2006).
41. Tilley, S.D., Cornuz, M., Sivula, K., and Grätzel, M.: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 122(36), 6549 (2010).
42. Hahn, N.T. and Mullins, C.B.: Photoelectrochemical performance of nanostructured Ti-and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 22, 6474 (2010).
43. Frydrych, J., Machala, L., Tucek, J., Siskova, K., Filip, J., Pechousek, J., Safarova, K., Vondracek, M., Seo, J.H., Schneeweiss, O., Grätzel, M., Sivula, K., and Zboril, R.: Facile fabrication of tin-doped hematite photoelectrodes: Effect of doping on magnetic properties and performance for light-induced water splitting. J. Mater. Chem. 22(43), 23232 (2012).
44. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111(44), 16477 (2007).
45. Sanchez, C., Sieber, K.D., and Somorjai, G.A.: The photoelectrochemistry of niobium doped α-Fe2O3 . J. Electroanal. Chem. 252(2), 269 (1988).
46. Hisatomi, T., Dotan, H., Stefik, M., Sivula, K., Rothschild, A., Grätzel, M., and Mathews, N.: Enhancement in the performance of ultrathin hematite photoanode for water splitting by an oxide underlayer. Adv. Mater. 24(20), 2699 (2012).
47. Hisatomi, T., Brillet, J., Cornuz, M., Le Formal, F., Tetreault, N., Sivula, K., and Grätzel, M.: A Ga2O3 underlayer as an isomorphic template for ultrathin hematite films toward efficient photoelectrochemical water splitting. Faraday Discuss. 155, 223 (2012).
48. Souza, F.L., Lopes, K.P., Longo, E., and Leite, E.R.: The influence of the film thickness of nanostructured alpha-Fe2O3 on water photooxidation. Phys. Chem. Chem. Phys. 11(8), 1215 (2009).
49. Le Formal, F., Grätzel, M., and Sivula, K.: Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 20(7), 1099 (2010).
50. Zandi, O., Klahr, B.M., and Hamann, T.W.: Highly photoactive Ti-doped α-Fe2O3 thin film electrodes: Resurrection of the dead layer. Energy Environ. Sci. 6(2), 634 (2013).
51. Bjoerksten, U., Moser, J., and Grätzel, M.: Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 6(6), 858 (1994).
52. Kharisov, B.I., Kharissova, O.V., and Jose-Yacaman, M.: Nanostructures with animal-like shapes. Ind. Eng. Chem. Res. 49(18), 8289 (2010).
53. Armelao, L., Granozzi, G., Tondello, E., Colombo, P., Principi, G., Lottici, P.P., and Antonioli, G.: Nanocrystalline α-Fe2O3 sol-gel thin films: A microstructural study. J. Non-Cryst. Solids 192193, 435 (1995).
54. Woo, K., Lee, H.J., Ahn, J.P., and Park, Y.S.: Sol–gel mediated synthesis of Fe2O3 nanorods. Adv. Mater. 15(20), 1761 (2003).
55. Mao, A., Han, G.Y., and Park, J.H.: Synthesis and photoelectrochemical cell properties of vertically grown α-Fe2O3 nanorod arrays on a gold nanorod substrate. J. Mater. Chem. 20(11), 2247 (2010).
56. Mohapatra, S.K., John, S.E., Banerjee, S., and Misra, M.: Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays. Chem. Mater. 21(14), 3048 (2009).
57. Murth, A.S.N. and Reddy, K.S.: Photoelectrochemical behaviour of undoped ferric oxide (α-Fe2O3) electrodes prepared by spray pyrolysis. Mater. Res. Bull. 19(2), 241 (1984).
58. Duret, A. and Grätzel, M.: Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109(36), 17184 (2005).
59. Le Formal, F., Sivula, K., and Grätzel, M.: The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J. Phys. Chem. C 116(51), 26707 (2012).
60. Beermann, N., Vayssieres, L., Lindquist, S-E., and Hagfeldt, A.: Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147(7), 2456 (2000).
61. Wheeler, D.A., Wang, G., Ling, Y., Li, Y., and Zhang, J.Z.: Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 5(5), 6682 (2012).
62. Jorand Sartoretti, C., Alexander, B.D., Solarska, R., Rutkowska, I.A., Augustynski, J., and Cerny, R.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109(28), 13685 (2005).
63. Martinson, A.B.F., DeVries, M.J., Libera, J.A., Christensen, S.T., Hupp, J.T., Pellin, M.J., and Elam, J.W.: Atomic layer deposition of Fe2O3 using ferrocene and ozone. J. Phys. Chem. C 115(10), 4333 (2011).
64. Klahr, B.M., Martinson, A.B., and Hamann, T.W.: Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27(1), 461 (2011).
65. Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., and Grätzel, M.: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 132(21), 7436 (2010).
66. Zhong, D.K., Cornuz, M., Sivula, K., Grätzel, M., and Gamelin, D.R.: Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4(5), 1759 (2011).
67. Mao, A., Kim, J.K., Shin, K., Wang, D.H., Yoo, P.J., Han, G.Y., and Park, J.H.: Hematite modified tungsten trioxide nanoparticle photoanode for solar water oxidation. J. Power Sources 210, 32 (2012).
68. Zhong, L-S., Hu, J-S., Liang, H-P., Cao, A-M., Song, W-G., and Wan, L-J.: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18(18), 2426 (2006).
69. Kim, H.J., Choi, K.I., Pan, A.Q., Kim, I.D., Kim, H.R., Kim, K.M., Na, C.W., Cao, G.Z., and Lee, J.H.: Template-free solvothermal synthesis of hollow hematite spheres and their applications in gas sensors and Li-ion batteries. J. Mater. Chem. 21(18), 6549 (2011).
70. Li, J., Lai, X., Xing, C., and Wang, D.: One-pot synthesis of porous hematite hollow microspheres and their application in water treatment. J. Nanosci. Nanotechnol. 10(11), 7707 (2010).
71. Lin, K.S., Wang, Z.P., Chowdhury, S., and Adhikari, A.K.: Preparation and characterization of aligned iron nanorod using aqueous chemical method. Thin Solid Films 517(17), 5192 (2009).
72. Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., and Constable, E.C.: Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23(8), 2051 (2011).
73. Xi, L., Tran, P.D., Chiam, S.Y., Bassi, P.S., Mak, W.F., Mulmudi, H.K., Batabyal, S.K., Barber, J., Loo, J.S.C., and Wong, L.H.: Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation. J. Phys. Chem. C 116(26), 13884 (2012).
74. Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., and Lee, S-T.: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012).
75. Warren, S.C., Voïtchovsky, K., Dotan, H., Leroy, C.M., Cornuz, M., Stellacci, F., Hébert, C., Rothschild, A., and Grätzel, M.: Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12, 842 (2013).
76. Wu, J-J., Lee, Y-L., Chiang, H-H., and Wong, D.K-P.: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108 (2006).
77. Mao, A., Park, N-G., Han, G.Y., and Park, J.H.: Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: Use for photoelectrochemical water splitting. Nanotechnology 22, 175703 (2011).
78. Rao, P.M. and Zheng, X.L.: Rapid catalyst-free flame synthesis of dense, aligned α-Fe2O3 nanoflake and CuO nanoneedle arrays. Nano Lett. 9, 3001 (2009).
79. Nasibulin, A.G., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P.R., Shandakov, S.D., Nasibulina, L., Sainio, J., and Kauppinen, E.I.: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).
80. Vincent, T., Gross, M., Dotan, H., and Rothschild, A.: Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting. Int. J. Hydrogen Energy 37, 81028109 (2012).
81. Lin, Y., Zhou, S., Sheehan, S.W., and Wang, D.: Nanonet-based hematite heteronanostructures for efficient solar water splitting. J. Am. Chem. Soc. 133, 2398 (2011).
82. de Carvalho, V.A.N., Luz, R.A.S., Lima, B.H., Crespilho, F.N., Leite, E.R., and Souza, F.L.: Highly oriented hematite nanorods arrays for photoelectrochemical water splitting. J. Power Sources 205, 525 (2012).
83. Ferraz, L.C., Carvalho, W.M. Jr., Criado, D., and Souza, F.L.: Vertically oriented iron oxide films produced by hydrothermal process: Effect of thermal treatment on the physical chemical properties. ACS Appl. Mater. Interfaces 4(10), 5515 (2012).
84. Hu, X. and Yu, J.C.: Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave–hydrothermal method. Adv. Funct. Mater. 18(6), 880 (2008).
85. Vayssieres, L., Hagfeldt, A., and Lindquist, S.E.: Purpose-built metal oxide nanomaterials. The emergence of a new generation of smart materials. Pure Appl. Chem. 72(1–2), 47 (2000).
86. Kronawitter, C.X., Zegkinoglou, I., Shen, S., Guo, J., Himpsel, F.J., Mao, S.S., and Vayssieres, L.: On the orbital anisotropy in hematite nanorod-based photoanodes. Phys. Chem. Chem. Phys. 15, 13483 (2013).
87. Shen, S., Guo, P., Wheeler, D.A., Jiang, J., Lindley, S.A., Kronawitter, C.X., Zhang, J.Z., Guo, L., and Mao, S.S.: Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays. Nanoscale, 98679874 (2013).
88. Kronawitter, C.X., Vayssieres, L., Shen, S., Guo, L., Wheeler, D.A., Zhang, J.Z., Antoun, B.R., and Mao, S.S.: A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy Environ. Sci. 4, 3889 (2011).
89. Byrappa, K. and Yoshimura, M.: Hydrothermal technology: Principles and applications. In Handbook of Hydrothermal Technology (William Andrew Publishing, Norwich, NY, 2001); p. 1.
90. Morey, G. and Niggli, P.: The hydrothermal formation of silicates: A review. J. Am. Chem. Soc. 35(9), 1086 (1913).
91. Lencka, M.M., Anderko, A., and Riman, R.E.: Hydrothermal precipitation of lead zirconate titanate solid solutions: Thermodynamic modeling and experimental synthesis. J. Am. Ceram. Soc. 78(10), 2609 (1995).
92. Eckert, J.O., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., and Riman, R.E.: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79(11), 2929 (1996).
93. Christensen, A.N., Savolainen, M-L., Johansson, G., Tolboe, O., and Paasivirta, J.: Hydrothermal preparation of goethite and hematite from amorphous iron(III) hydroxide. Acta Chem. Scand. 22, 1487 (1968).
94. Blesa, M.A. and Matijević, E.: Phase-transformations of iron-oxides, oxohydroxides, and hydrous oxides in aqueous-media. Adv. Colloid Interface Sci. 29(3–4), 173 (1989).
95. Vayssieres, L.: On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 1(1–2), 1 (2004).
96. Vayssieres, L., Beermann, N., Lindquist, S-E., and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13(2), 233 (2001).
97. Wang, P., Wang, D., Lin, J., Li, X., Peng, C., Gao, X., Huang, Q., Wang, J., Xu, H., and Fan, C.: Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device. ACS Appl. Mater. Interfaces 4(4), 2295 (2012).
98. Shen, S., Kronawitter, C.X., Jiang, J., Mao, S.S., and Guo, L.: Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 5(5), 327 (2012).
99. Lindgren, T., Wang, H.L., Beermann, N., Vayssieres, L., Hagfeldt, A., and Lindquist, S.E.: Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71(2), 231 (2002).
100. Vayssieres, L., Sathe, C., Butorin, S.M., Shuh, D.K., Nordgren, J., and Guo, J.: One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17(19), 2320 (2005).
101. Morrish, R., Rahman, M., MacElroy, J.M., and Wolden, C.A.: Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 4(4), 474 (2011).
102. Jang, J.S., Lee, J., Ye, H., Fan, F-R.F., and Bard, A.J.: Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113(16), 6719 (2009).
103. Kumar, P., Sharma, P., Shrivastav, R., Dass, S., and Satsangi, V.R.: Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy 36(4), 2777 (2011).
104. Hu, Y-S., Kleiman-Shwarsctein, A., Forman, A.J., Hazen, D., Park, J-N., and McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20(12), 3803 (2008).
105. Sivula, K.: Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis. J. Phys. Chem. Lett. 4(10), 16241633 (2013).
106. Ling, Y., Wang, G., Reddy, J., Wang, C., Zhang, J.Z., and Li, Y.: The influence of oxygen content on the thermal activation of hematite nanowires. Angew. Chem. Int. Ed. 51(17), 4074 (2012).
107. Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+ . Science 321(5892), 1072 (2008).
108. Kavan, L., Kratochvilova, K., and Grätzel, M.: Study of nanocrystalline TiO2 (anatase) electrode in the accumulation regime. J. Electroanal. Chem. 394(1–2), 93 (1995).
109. Stehle, R.C., Bobek, M.M., Hooper, R., and Hahn, D.W.: Oxidation reaction kinetics for the steam-iron process in support of hydrogen production. Int. J. Hydrogen Energy 36(23), 15125 (2011).
110. Bisquert, J., Fabregat-Santiago, F., Mora-Seró, I., Garcia-Belmonte, G., Barea, E.M., and Palomares, E.: A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorg. Chim. Acta 361(3), 684 (2008).
111. Schultze, J.W.: Electrochemistry of novel materials. Adv. Mater. 8(4), 360 (1994).
112. Xavier, A.M., Ferreira, F.F., and Souza, F.L.: Morphological and structural evolution of one dimensional hematite nanorods. RSC Adv. (2013, accepted).
113. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110(11), 6474 (2010).
114. Zhong, D.K. and Gamelin, D.R.: Photoelectrochemical water oxidation by cobalt catalyst (“Co-Pi”)/alpha-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132(12), 4202 (2010).
115. Gamelin, D.R.: Water splitting: Catalyst or spectator? Nat. Chem. 4(12), 965 (2012).
116. Aroutiounian, V.: Investigation of ceramic Fe2O3 $\left\langle {T_a } \right\rangle$ photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energy 27(1), 33 (2002).
117. Jang, J.S., Yoon, K.Y., Xiao, X., Fan, F-R.F., and Bard, A.J.: Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag−Fe2O3 nanocomposite and Sn doping. Chem. Mater. 21(20), 4803 (2009).
118. McDonald, K.J. and Choi, K-S.: Photodeposition of co-based oxygen evolution catalysts on α-Fe2O3 photoanodes. Chem. Mater. 23(7), 1686 (2011).
119. Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J. Am. Chem. Soc. 131(17), 6086 (2009).
120. Hong, Y.R., Liu, Z., Al-Bukhari, S.F., Lee, C.J., Yung, D.L., Chi, D., and Hor, T.S.: Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem. Commun. 47(38), 10653 (2011).
121. Cha, H.G., Song, J., Kim, H.S., Shin, W., Yoon, K.B., and Kang, Y.S.: Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem. Commun. 47(8), 2441 (2011).
122. Hou, Y., Zuo, F., Dagg, A., and Feng, P.: Visible light-driven alpha-Fe2O3 nanorod/graphene/BiV1-xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464 (2012).
123. Xi, L., Chiam, S.Y., Mak, W.F., Tran, P.D., Barber, J., Loo, S.C.J., and Wong, L.H.: A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem. Sci. 4(1), 164 (2013).
124. Spray, R.L., McDonald, K.J., and Choi, K-S.: Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 115(8), 3497 (2011).
125. McDonald, K.J. and Choi, K-S.: Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem. Mater. 23(21), 4863 (2011).
126. Dotan, H., Sivula, K., Grätzel, M., Rothschild, A., and Warren, S.C.: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958 (2011).
127. Klahr, B.M. and Hamann, T.W.: Current and voltage limiting processes in thin film hematite electrodes. J. Phys. Chem. C 115(16), 8393 (2011).
128. Rahman, G. and Joo, O-S.: Photoelectrochemical water splitting at nanostructured α-Fe2O3 electrodes. Int. J. Hydrogen Energy 37(19), 13989 (2012).

Related content

Powered by UNSILO

Recent advances on solar water splitting using hematite nanorod film produced by purpose-built material methods

  • Waldemir Moura de Carvalho (a1) and Flavio Leandro Souza (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.