Skip to main content Accessibility help
×
Home

Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications

  • Woojin Jeon (a1)

Abstract

Capacitors represent the largest obstacle to dynamic random-access memory (DRAM) technology evolution because the capacitor properties govern the overall operational characteristics of DRAM devices. Moreover, only the atomic layer deposition (ALD) technique is used for the dielectric and electrode because of its extreme geometry. Various high-k materials deposited by ALD have been investigated for further scaling. Whereas past investigations focused on increasing the physical thickness of the dielectric to suppress leakage current, the physical thickness of the dielectric should also be limited to a few nanometers in design rules less than 1×-nm. Therefore, a new way to overcome the limitations of traditional approaches based on thorough understanding of high-k materials is highly recommended to enhance the properties of conventional materials and provide directions for developing new materials. In this review, previously reported results are discussed, and suggestions are made for further investigations for DRAM capacitor applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: woojin.jeon@khu.ac.kr

Footnotes

Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes

References

Hide All
1.Hwang, C.S.: Prospective of semiconductor memory devices: From memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).
2.Kotecki, D.E.: A review of high dielectric materials for dram capacitors. Integr. Ferroelectr. 16, 1 (1997).
3.Scott, J.F.: High-dielectric constant thin films for dynamic random access memories (DRAM). Annu. Rev. Mater. Sci. 28, 79 (1998).
4.Kim, S.K. and Popovici, M.: Future of dynamic random-access memory as main memory. MRS Bull. 43, 334 (2018).
5.Wilk, G.D., Wallace, R.M., and Anthony, J.M.: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).
6.Jegert, G., Kersch, A., Weinreich, W., and Lugli, P.: Monte carlo simulation of leakage currents in TiN/ZrO2TiN capacitors. IEEE Trans. Electron Devices 58, 327 (2011).
7.Robertson, J. and Wallace, R.M.: High-k materials and metal gates for CMOS applications. Mater. Sci. Eng., R 88, 1 (2015).
8.Zhu, W., Low, T., Lee, Y-H., Wang, H., Farmer, D.B., Kong, J., Xia, F., and Avouris, P.: Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 10451 (2014).
9.Baniecki, J.D., Shioga, T., Kurihara, K., and Kamehara, N.: Investigation of the importance of interface and bulk limited transport mechanisms on the leakage current of high dielectric constant thin film capacitors. J. Appl. Phys. 94, 6741 (2003).
10.Robertson, J.: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).
11.Yim, K., Yong, Y., Lee, J., Lee, K., Nahm, H.H., Yoo, J., Lee, C., Hwang, C.S., and Han, S.: Novel high-k dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7, e190 (2015).
12.Khan, M.S., Kim, H.J., Taniguchi, T., Ebina, Y., Sasaki, T., and Osada, M.: Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Appl. Phys. Express 10, 091501 (2017).
13.Liu, X., Ramanathan, S., Longdergan, A., Srivastava, A., Lee, E., Seidel, T.E., Barton, J.T., Pang, D., and Gordon, R.G.: ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone. J. Electrochem. Soc. 152, G213 (2005).
14.Ponraj, J.S., Attolini, G., and Bosi, M.: Review on atomic layer deposition and applications of oxide thin films. Crit. Rev. Solid State Mater. Sci. 38, 203 (2013).
15.Johnson, R.W., Hultqvist, A., and Bent, S.F.: A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 17, 236 (2014).
16.George, S.M.: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).
17.Leskelä, M. and Ritala, M.: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138146 (2002).
18.Richter, C., Schenk, T., Schroeder, U., and Mikolajick, T.: Film properties of low temperature HfO2 grown with H2O, O3, or remote O2-plasma. J. Vac. Sci. Technol., A 32, 01A117 (2014).
19.Kim, J.H., Park, T.J., Kim, S.K., Cho, D-Y., Jung, H-S., Lee, S.Y., and Hwang, C.S.: Chemical structures and electrical properties of atomic layer deposited HfO2 thin films grown at an extremely low temperature (≤100 °C) using O3 as an oxygen source. Appl. Surf. Sci. 292, 852 (2014).
20.Schroeder, U., Jakschik, S., Erben, E., Avellan, A., Kudelka, S.P., Kerber, M., Link, A., and Kersch, A.: Recent Developments in ALD Technology for 50 nm Trench DRAM Applications, S. Kar, S. De Gendt, M. Houssa, D. Landheer, D. Misra, and W. Tsai, eds. (ECS Transactions 1, Los Angeles, CA, 2005); pp. 125132.
21.Yoo, Y.W., Jeon, W., Lee, W., An, C.H., Kim, S.K., and Hwang, C.S.: Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes. ACS Appl. Mater. Interfaces 6, 22474 (2014).
22.Zhao, X. and Vanderbilt, D.: Phonons and lattice dielectric properties of zirconia. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 1 (2002).
23.Zhao, X. and Vanderbilt, D.: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65, 233106 (2002).
24.Jung, H.S., Jang, J.H., Cho, D.Y., Jeon, S.H., Kim, H.K., Lee, S.Y., and Hwang, C.S.: The effects of postdeposition annealing on the crystallization and electrical characteristics of HfO2 and ZrO2 gate dielectrics. Electrochem. Solid-State Lett. 14, G17 (2011).
25.Lee, Y., Jeon, W., Cho, Y., Lee, M-H., Jeong, S-J., Park, J., and Park, S.: Mesostructured HfxAlyO2 thin films as reliable and robust gate dielectrics with tunable dielectric constants for high-performance graphene-based transistors. ACS Nano 10, 6659 (2016).
26.Lee, J.H., Yu, I-H., Lee, S.Y., and Hwang, C.S.: Phase control of HfO2-based dielectric films for higher-k materials. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 32, 03D109 (2014).
27.Weinreich, W., Shariq, A., Seidel, K., Sundqvist, J., Paskaleva, A., Lemberger, M., and Bauer, A.J.: Detailed leakage current analysis of metal–insulator–metal capacitors with ZrO2, ZrO2/SiO2/ZrO2, and ZrO2/Al2O3/ZrO2 as dielectric and TiN electrodes. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31, 01A109 (2013).
28.Lee, S.Y., Chang, J., Kim, Y., Lim, H., Jeon, H., and Seo, H.: Depth resolved band alignments of ultrathin TiN/ZrO2 and TiN/ZrO2–Al2O3–ZrO2 dynamic random access memory capacitors. Appl. Phys. Lett. 105, 201603 (2014).
29.Lee, S.Y., Chang, J., Choi, J., Kim, Y., Lim, H., Jeon, H., and Seo, H.: Investigation of ultrathin Pt/ZrO2–Al2O3–ZrO2/TiN DRAM capacitors Schottky barrier height by internal photoemission spectroscopy. Curr. Appl. Phys. 17, 267 (2017).
30.Lee, S-Y., Kim, H., McIntyre, P.C., Saraswat, K.C., and Byun, J-S.: Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application. Appl. Phys. Lett. 82, 2874 (2003).
31.Knebel, S., Schroeder, U., Zhou, D., Mikolajick, T., and Krautheim, G.: Conduction mechanisms and breakdown characteristics of Al2O3-doped ZrO2 high-k dielectrics for three-dimensional stacked metal–insulator–metal capacitors. IEEE Trans. Device Mater. Reliab. 14, 154 (2014).
32.Jegert, G., Kersch, A., Weinreich, W., and Lugli, P.: Ultimate scaling of TiN/ZrO2/TiN capacitors: Leakage currents and limitations due to electrode roughness. J. Appl. Phys. 109, 014504 (2011).
33.Jegert, G., Popescu, D., Lugli, P., Häufel, M.J., Weinreich, W., and Kersch, A.: Role of defect relaxation for trap-assisted tunneling in high-k thin films: A first-principles kinetic monte carlo study. Phys. Rev. B 85, 045303 (2012).
34.Jeon, W., Kim, Y., An, C.H., Hwang, C.S., Gonon, P., and Vallee, C.: Demonstrating the ultrathin metal–insulator–metal diode using TiN/ZrO2–Al2O3–ZrO2 stack by employing RuO2 top electrode. IEEE Trans. Electron Devices 65, 660 (2018).
35.Martin, D., Grube, M., Weinreich, W., Müller, J., Weber, W.M., Schröder, U., Riechert, H., and Mikolajick, T.: Mesoscopic analysis of leakage current suppression in ZrO2/Al2O3/ZrO2 nano-laminates. J. Appl. Phys. 113, 194103 (2013).
36.Wang, L-M.: Relationship between Intrinsic Breakdown Field and Bandgap of Materials, N. Stojadinović, S. Dimitrijev, H. Iwai, S. Selberherr, J. Liou, I. Manić, and T. Pešić, eds. (25th International Conference on Microelectronics, Belgrade, Serbia and Montenegro, 2006); p. 576.
37.Kim, S.K. and Hwang, C.S.: Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates. Electrochem. Solid-State Lett. 11, G9 (2008).
38.Cho, H.J., Kim, Y.D., Park, D.S., Lee, E., Park, C.H., Jang, J.S., Lee, K.B., Kim, H.W., Ki, Y.J., Han, I.K., and Song, Y.W.: New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60 nm and below DRAMs. Solid State Electron. 51, 1529 (2007).
39.Lee, B., Choi, K.J., Hande, A., Kim, M.J., Wallace, R.M., Kim, J., Senzaki, Y., Shenai, D., Li, H., Rousseau, M., and Suydam, J.: A novel thermally-stable zirconium amidinate ALD precursor for ZrO2 thin films. Microelectron. Eng. 86, 272 (2009).
40.Cho, H., Kim, Y., Park, D., Lee, E., Park, C., Jang, J., Lee, K., Kim, H., Chae, S., Ki, Y., Han, I., and Song, Y.: New TIT Capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60 nm and below DRAMs, M. Declercq, Y. Leblebici, A. Ionescu, H. Shea, R. Thewes, C. Enz, Q. Huang, T. Noll, G. DeMicheli, W. Grabinski, K. Ishimaru, S. Eggli, and V. Aguet, eds. (European Solid-State Device Research Conference, 36, Montreux, Switzerland, 2006); p. 146.
41.Kil, D-S., Song, H-S., Lee, K-J., Hong, K., Kim, J-H., Park, K-S., Yeom, S-J., Roh, J-S., Kwak, N-J., Sohn, H-C., Kim, J-W., and Park, S-W.: Development of New TiN/ZrO2/Al2O3/ZrO2/TiN Capacitors Extendable to 45 nm Generation DRAMs Replacing HfO2 Based Dielectrics, R. Havemann, S. Kimura, L. Tran, and R. Yamada, eds. (2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers, Hawaii, USA, 2006); p. 38.
42.Jeon, W., Salicio, O., Chaker, A., Gonon, P., and Vallee, C.: Controlling the current conduction asymmetry of HfO2 metal–insulator–metal diodes by interposing Al2O3 layer. IEEE Trans. Electron Devices 66, 402 (2019).
43.An, C.H., Lee, W., Kim, S.H., Cho, C.J., Kim, D-G., Kwon, D.S., Cho, S.T., Cha, S.H., Lim, J.I., Jeon, W., and Hwang, C.S.: Controlling the electrical characteristics of ZrO2/Al2O3/ZrO2 capacitors by adopting a Ru top electrode grown via atomic layer deposition. Phys. Status Solidi RRL 13, 1800454 (2019).
44.Tapily, K., Gu, D., Baumgart, H., Namkoong, G., Stegall, D., and Elmustafa, A.A.: Mechanical and structural characterization of atomic layer deposition-based ZnO films. Semicond. Sci. Technol. 26, 115005 (2011).
45.Hornsveld, N., Put, B., Kessels, W.M.M., Vereecken, P.M., and Creatore, M.: Plasma-assisted and thermal atomic layer deposition of electrochemically active Li2CO3. RSC Adv. 7, 41359 (2017).
46.Choi, W-H., Sheng, J., Jeong, H-J., Park, J-S., Kim, M., and Jeon, W.: Improved performance and stability of In–Sn–Zn–O thin film transistor by introducing a meso-crystalline ZrO2 high-k gate insulator. J. Vac. Sci. Technol., A 37, 020924 (2019).
47.Kim, J.Y., Kim, D-W., Jung, H.S., and Hong, K.S.: Influence of anatase–rutile phase transformation on dielectric properties of sol–gel derived TiO2 thin films. Jpn. J. Appl. Phys. 44, 6148 (2005).
48.Tang, H., Prasad, K., Sanjinès, R., Schmid, P.E., and Lévy, F.: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).
49.Di Mo, S. and Ching, W.Y.: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 51, 13023 (1995).
50.Jeon, W., Chung, H-S., Joo, D., and Kang, S-W.: TiO2/Al2O3/TiO2 nanolaminated thin films for DRAM capacitor deposited by plasma-enhanced atomic layer deposition. Electrochem. Solid-State Lett. 11, H19 (2008).
51.Kim, S.K., Choi, G-J., Lee, S.Y., Seo, M., Lee, S.W., Han, J.H., Ahn, H-S., Han, S., and Hwang, C.S.: Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 20, 1429 (2008).
52.Deák, P., Aradi, B., and Frauenheim, T.: Polaronic effects in TiO2 calculated by the HSE06 hybrid functional: Dopant passivation by carrier self-trapping. Phys. Rev. B 83, 155207 (2011).
53.Jeon, W., Rha, S.H., Lee, W., Yoo, Y.W., An, C.H., Jung, K.H., Kim, S.K., and Hwang, C.S.: Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films. ACS Appl. Mater. Interfaces 6, 7910 (2014).
54.Han, J.H., Han, S., Lee, W., Lee, S.W., Kim, S.K., Gatineau, J., Dussarrat, C., and Hwang, C.S.: Improvement in the leakage current characteristic of metal–insulator–metal capacitor by adopting RuO2 film as bottom electrode. Appl. Phys. Lett. 99, 022901 (2011).
55.Jeon, W., Rha, S.H., Lee, W., An, C.H., Chung, M.J., Kim, S.H., Cho, C.J., Kim, S.K., and Hwang, C.S.: Asymmetry in electrical properties of Al-doped TiO2 film with respect to bias voltage. Phys. Status Solidi RRL 9, 410 (2015).
56.Shim, J.H., Choi, H.J., Kim, Y., Torgersen, J., An, J., Lee, M.H., and Prinz, F.B.: Process-property relationship in high: K ALD SrTiO3 and BaTiO3: A review. J. Mater. Chem. C 5, 8000 (2017).
57.Ulrich, R., Schaper, L., Nelms, D., and Leftwich, M.: Comparison of paraelectric and ferroelectric materials for applications as dielectrics in thin film integrated capacitors. Int. J. Microcircuits Electron. Packag. 23, 172 (2000).
58.Choudhury, B.K., Rao, K.V., and Choudhury, R.N.P.: Dielectric properties of SrTiO3 single crystals subjected to high electric fields and later irradiated with X-rays or γ-rays. J. Mater. Sci. 24, 3469 (1989).
59.Dugu, S., Pavunny, S.P., Scott, J.F., and Katiyar, R.S.: Si:SrTiO3–Al2O3–Si:SrTiO3 multi-dielectric architecture for metal–insulator–metal capacitor applications. Appl. Phys. Lett. 109, 212901 (2016).
60.Swerts, J., Popovici, M., Kaczer, B., Aoulaiche, M., Redolfi, A., Clima, S., Caillat, C., Wang, W.C., Afanasev, V.V., Jourdan, N., Olk, C., Hody, H., Van Elshocht, S., and Jurczak, M.: Leakage control in 0.4 nm EOT Ru/SrTiOx/Ru metal–insulator–metal capacitors: Process implications. IEEE Electron Device Lett. 35, 753 (2014).
61.Mojarad, S.A., Kwa, K.S.K., Goss, J.P., Zhou, Z., Ponon, N.K., Appleby, D.J.R., Al-Hamadany, R.A.S., and O’Neill, A.: A comprehensive study on the leakage current mechanisms of Pt/SrTiO3/Pt capacitor. J. Appl. Phys. 111, 014503 (2012).
62.Lee, C-K., Cho, E., Lee, H-S., Hwang, C.S., and Han, S.: First-principles study on doping and phase stability of HfO2. Phys. Rev. B 78, 012102 (2008).
63.Tomida, K., Kita, K., and Toriumi, A.: Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 89, 142902 (2006).
64.Park, P.K. and Kang, S-W.: Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3. Appl. Phys. Lett. 89, 192905 (2006).
65.Cho, D-Y., Jung, H.S., Yu, I-H., Yoon, J.H., Kim, H.K., Lee, S.Y., Jeon, S.H., Han, S., Kim, J.H., Park, T.J., Park, B-G., and Hwang, C.S.: Stabilization of tetragonal HfO2 under low active oxygen source environment in atomic layer deposition. Chem. Mater. 24, 3534 (2012).
66.Jang, J.H., Jung, H-S., Kim, J.H., Lee, S.Y., Hwang, C.S., and Kim, M.: Investigation of oxygen-related defects and the electrical properties of atomic layer deposited HfO2 films using electron energy-loss spectroscopy. J. Appl. Phys. 109, 023718 (2011).
67.Park, M.H., Kim, H.J., Kim, Y.J., Lee, W., Moon, T., and Hwang, C.S.: Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).
68.Park, M.H., Lee, Y.H., Kim, H.J., Kim, Y.J., Moon, T., Do Kim, K., Müller, J., Kersch, A., Schroeder, U., Mikolajick, T., and Hwang, C.S.: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811 (2015).
69.Park, M.H., Kim, H.J., Kim, Y.J., Moon, T., and Hwang, C.S.: The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 072901 (2014).
70.Garvie, R.C.: The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238 (1965).
71.Garvie, R.C.: Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82, 218 (1978).
72.Pitcher, M.W., Ushakov, S.V., Navrotsky, A., Woodfield, B.F., Li, G., Boerio-Goates, J., and Tissue, B.M.: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 (2005).
73.Shandalov, M. and McIntyre, P.C.: Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films. J. Appl. Phys. 106, 084322 (2009).
74.Kim, S.K., Kim, W.D., Kim, K.M., Hwang, C.S., and Jeong, J.: High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition. Appl. Phys. Lett. 85, 4112 (2004).
75.Kim, S.K., Han, S., Han, J.H., Lee, W., and Hwang, C.S.: Atomic layer deposition of TiO2 and Al-doped TiO2 films on Ir substrates for ultralow leakage currents. Phys. Status Solidi RRL 5, 262 (2011).
76.Lee, W., Cho, C.J., Lee, W.C., Hwang, C.S., Chang, R.P.H., and Kim, S.K.: MoO2 as a thermally stable oxide electrode for dynamic random-access memory capacitors. J. Mater. Chem. C 6, 13250 (2018).
77.Lee, D-K., Kwon, S-H., and Ahn, J-H.: Growth of rutile-TiO2 thin films via Sn doping and insertion of ultra-thin SnO2 interlayer by atomic layer deposition. Mater. Lett. 246, 1 (2019).
78.Lee, S.W., Han, J.H., Kwon, O.S., and Hwang, C.S.: Influences of a crystalline seed layer during atomic layer deposition of SrTiO3 thin films using Ti(O-iPr)2(thd)2, Sr(thd)2, and H2O. J. Electrochem. Soc. 155, G253 (2008).
79.Lee, W., Jeon, W., An, C.H., Chung, M.J., Kim, H.J., Eom, T., George, S.M., Park, B.K., Han, J.H., Kim, C.G., Chung, T-M., Lee, S.W., and Hwang, C.S.: Improved initial growth behavior of SrO and SrTiO3 films grown by atomic layer deposition using {Sr(demamp)(tmhd)}2 as Sr-precursor. Chem. Mater. 27, 38813891 (2015).
80.Kosola, A., Putkonen, M., Johansson, L-S., and Niinistö, L.: Effect of annealing in processing of strontium titanate thin films by ALD. Appl. Surf. Sci. 211, 102 (2003).
81.Vehkamäki, M., Hänninen, T., Ritala, M., Leskelä, M., Sajavaara, T., Rauhala, E., and Keinonen, J.: Atomic layer deposition of SrTiO3 thin films from a novel strontium precursor-strontium-bis(tri-isopropyl cyclopentadienyl). Chem. Vap. Depos. 7, 75 (2001).
82.Lee, W., Han, J.H., Jeon, W., Yoo, Y.W., Lee, S.W., Kim, S.K., Ko, C-H., Lansalot-Matras, C., and Hwang, C.S.: Atomic layer deposition of SrTiO3 films with cyclopentadienyl-based precursors for metal–insulator–metal capacitors. Chem. Mater. 25, 953 (2013).
83.Lee, S.W., Han, J.H., Han, S., Lee, W., Jang, J.H., Seo, M., Kim, S.K., Dussarrat, C., Gatineau, J., Min, Y-S., and Hwang, C.S.: Atomic layer deposition of SrTiO3 thin films with highly enhanced growth rate for ultrahigh density capacitors. Chem. Mater. 23, 2227 (2011).
84.Kil, D-S., Lee, J-M., and Roh, J-S.: Low-temperature ALD growth of SrTiO3 thin films from Sr β-diketonates and Ti alkoxide precursors using oxygen remote plasma as an oxidation source. Chem. Vap. Depos. 8, 195 (2002).
85.Kwon, O.S., Kim, S.K., Cho, M., Hwang, C.S., and Jeong, J.: Chemically conformal ALD of SrTiO3 thin films using conventional metallorganic precursors. J. Electrochem. Soc. 152, C229 (2005).
86.Popovici, M., Tomida, K., Swerts, J., Favia, P., Delabie, A., Bender, H., Adelmann, C., Tielens, H., Brijs, B., Kaczer, B., Pawlak, M.A., Kim, M-S., Altimime, L., Van Elshocht, S., and Kittl, J.A.: A comparative study of the microstructure-dielectric properties of crystalline SrTiO3 ALD films obtained via seed layer approach. Phys. Status Solidi 208, 1920 (2011).
87.Chung, M.J., Jeon, W., An, C.H., Kim, S.H., Lee, Y.K., Lee, W., and Hwang, C.S.: Quantitative analysis of the incorporation behaviors of Sr and Ti atoms during the atomic layer deposition of SrTiO3 thin films. ACS Appl. Mater. Interfaces 10, 8836 (2018).
88.Stengel, M. and Spaldin, N.A.: Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679 (2006).
89.Hwang, C.S.: Thickness-dependent dielectric constants of (Ba, Sr)TiO3 thin films with Pt or conducting oxide electrodes. J. Appl. Phys. 92, 432 (2002).
90.Kim, H.K., Yu, I-H., Lee, J.H., Park, T.J., and Hwang, C.S.: Controlling work function and damaging effects of sputtered RuO2 gate electrodes by changing oxygen gas ratio during sputtering. ACS Appl. Mater. Interfaces 5, 1327 (2013).
91.Kyeom Kim, H., Yu, I-H., Lee, J.H., Park, T.J., and Seong Hwang, C.: Scaling of equivalent oxide thickness of atomic layer deposited HfO2 film using RuO2 electrodes suppressing the dielectric dead-layer effect. Appl. Phys. Lett. 101, 172910 (2012).
92.Jeon, W., Yoo, S., Kim, H.K., Lee, W., An, C.H., Chung, M.J., Cho, C.J., Kim, S.K., and Hwang, C.S.: Evaluating the top electrode material for achieving an equivalent oxide thickness smaller than 0.4 nm from an Al-doped TiO2 film. ACS Appl. Mater. Interfaces 6, 21632 (2014).
93.Onaya, T., Nabatame, T., Sawada, T., Kurishima, K., Sawamoto, N., Ohi, A., Chikyow, T., and Ogura, A.: Role of high-k interlayer in ZrO2/high-k/ZrO2 insulating multilayer on electrical properties for DRAM capacitor. ECS Trans. 75, 667 (2016).
94.Kwon, H.M., Han, I.S., Park, S.U., Bok, J.D., Jung, Y.J., Shin, H.S., Kang, C.Y., Lee, B.H., Jammy, R., Lee, G.W., and Lee, H.D.: Conduction mechanism and reliability characteristics of a metal–insulator–metal capacitor with single ZrO2 layer. Jpn. J. Appl. Phys. 50, 3 (2011).
95.Kim, J.H., Ignatova, V., Kücher, P., Heitmann, J., Oberbeck, L., and Schröder, U.: Physical and electrical characterization of high-k ZrO2 metal–insulator–metal capacitor. Thin Solid Films 516, 8333 (2008).
96.Monaghan, S., Cherkaoui, K., Connor, É.O., Djara, V., Hurley, P.K., Oberbeck, L., Tois, E., Wilde, L., and Teichert, S.: TiN/ZrO2/Ti/Al metal–insulator–metal capacitors with subnanometer CET using ALD-deposited ZrO2 for DRAM applications. IEEE Electron. Device Lett. 30(3), 219 (2009).

Keywords

Related content

Powered by UNSILO

Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications

  • Woojin Jeon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.