Skip to main content Accessibility help

Real-time x-ray scattering study of growth behavior of sputter-deposited LaNiO3 thin films on Si substrates

  • Hsin-Yi Lee (a1), K. S. Liang (a1), Chih-Hao Lee (a2) and Tai-Bor Wu (a3)


Real-time x-ray reflectivity and diffraction measurements under in situ sputtering conditions were employed to study the growth behavior of LaNiO3 thin films on a Si substrate. Our results clearly show there is a transition layer of 60 Å, which grew in the first 6 min of deposition. The in situ x-ray-diffraction patterns indicated that this transition layer is amorphous. Subsequently, a polycrystalline overlayer grew as observed from the in situ x-ray reflectivity curves and diffraction patterns. Nucleation and growth took place on this transition layer with random orientation and then the polycrystalline columnar textures of (100) and (110) grew on the top of this random orientation layer. By comparing the integrated intensities of two Bragg peaks in the plane normal of x-ray diffraction, it was found that a crossover of the growth orientation from the ⟨110⟩ to the ⟨100ߩ direction occurred and the ability of (100) texturization enhanced with increasing film thickness beyond a certain critical value.


Corresponding author

a)Address all correspondence to this


Hide All
1.Heartling, G.H., J. Vac. Sci. Technol. A 9, 414 (1991).
2.Sayer, M. and Sreenivas, K., Science 247, 105 (1990).
3.Sheppard, L.M., Ceram. Bull. 71, 85 (1992).
4.Larsen, P.K., Cuppens, R., and Spierings, G.A.C.M, Ferroelectrics 128, 265 (1992).
5.Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, V., and Hoesler, W., in Ferroelectric Thin Films II, edited by Kingor, A.I., Myers, E.R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 123.
6.Jiang, M.C. and Wu, T.B., J. Mater. Res. 9, 1879 (1994).
7.Scott, J.F. and Paz de Araujo, C.A., Science 246, 1400 (1989).
8.Eom, C.B., Dover, R.B.V, Phillips, J.M., Fleming, R.M., Cava, R.J., Marshall, J.H., Werder, D.J., Chen, C.H., and Fork, D.K., in Ferroelectric Thin Films III, edited by Mayers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), p. 145.
9.Vijat, D.P. and Desu, S.B., J. Electrochem. Soc. 140, 2640 (1993).
10.Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).
11.Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).
12.Rajeex, K.P., Shivakuma, G.V., and Raychaudhmi, A.K., Solid State Commun. 79, 591 (1991).
13.Satyakahmi, K.M., Mallha, R.M., Ramanathan, K.V., Wu, X.D., Brainard, B., Gautier, D.C., Vasanthacharya, N.Y., and Hegde, M.S., Appl. Phys. Lett. 62, 1233 (1993).
14.Ichinose, H., Nagano, M., Katsuki, H., and Takag, H., J. Mater. Sci. 29, 5115 (1994).
15.Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).
16.Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 330 (1975).
17.Yang, C.C., Chen, M.S., Hong, T.J., Wu, C.M., Wu, J.M., and Wu, T.B., Appl. Phys. Lett. 66, 2643 (1995).
18.Lee, H-Y., Wu, T-B., and Lee, J-F., J. Appl. Phys. 80, 2175 (1996).
19.Shyu, M.J., Hong, T.J., and Wu, T.B., Jpn. J. Appl. Phys. 34, 3647 (1995).
20.Shyu, M.J., Hong, T.J., and Wu, T.B., Mater. Lett. 23, 221 (1995).
21.Chen, M.S., Wu, J.M., and Wu, T.B., Jpn. J. Appl. Phys. 34, 4870 (1995).
22.Chen, M.S., Wu, T.B., and Wu, J.M., J. Appl. Phys. 68, 1430 (1996).
23.Wu, T.B., Hong, T.J., and Jiang, M.C., Mater. Chem. Phys. 36, 337 (1994).
24.Lee, H-Y. and Wu, T-B., J. Mater. Res. 12, 3165 (1997).
25.Liu, Y.W., M.S. Thesis, National Tsing Hua University, Hsinchu, Taiwan, Republic of China, 1996 (in Chinese).
26.Cowley, R.A. and Ryan, T.W., J. Phys. D 20, 61 (1987).
27.Parratt, L.G., Phys. Rev. 95, 359 (1954).
28.Braslau, A., Pershan, P.S., Swislow, G., Ocko, B.M., and Als-Nielsen, J., Phys. Rev. A 38, 2457 (1988).
29.Heald, S.M., Chen, H., and Tranquada, J.M., Phys. Rev. B 38, 1016 (1988).
30.Lucas, C.A., Hatton, P.D., Bates, S., Ryan, W., Miles, S., and Tanner, B.K., J. Appl. Phys. 63, 1936 (1988).
31.Chen, H. and Heald, S.M., J. Appl. Phys. 66, 1793 (1989).
32.Tidswell, I.M., Ocko, B.M., Pershan, P.S., Wasserman, S.R., Whitesides, G.M., and Axe, J.D., Phys. Rev. B 41, 1111 (1990).
33.Bowen, D.K., Loxley, N., Tanner, B.K., Cooke, M.L., and Capano, M.A., in Advances in Surfaces and Thin-Film Diffraction, edited by Huang, T.C., Cohen, P.I., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 208, Pittsburgh, PA, 1991), p. 113.
34.Je, J.H., Noh, D.Y., Kim, H.K., and Liang, K.S., J. Appl. Phys. 81, 6126 (1997).
35. JCPDS 33–710, H. Wustenberg, Hahn, Institut für Kristallografie, Technische Hochschule, Aachen, Germany, JCPDS Grant-in-Report, 1981.
36.Oh, U.C. and Je, J.H., J. Appl. Phys. 74, 1692 (1993).
37.Tseng, T.F., Yang, C.C., Liu, K.S., Wu, J.M., Wu, T.B., and Lin, I.N., Jpn. J. Appl. Phys. 35, 4743 (1996).

Real-time x-ray scattering study of growth behavior of sputter-deposited LaNiO3 thin films on Si substrates

  • Hsin-Yi Lee (a1), K. S. Liang (a1), Chih-Hao Lee (a2) and Tai-Bor Wu (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed