Skip to main content Accessibility help
×
Home

Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo–hot isostatic pressing process

  • Yuelei Bai (a1), Xiaodong He (a2), Yibin Li (a1), Chuncheng Zhu (a3) and Sam Zhang (a4)...

Abstract

In this study, the dense polycrystalline Ti2AlC was synthesized by self-propagating high-temperature combustion synthesis with the pseudo–hot isostatic pressing process (SHS/PHIP). The resultant phase purity is highly dependent on the mol ratio of raw powders. The Ti2AlC was densified by applying pressure after the SHS reaction. The resultant sample mainly contains typical plate-like nonstoichiometric Ti2AlCx (x = 0.69) with grain size of ∼6 µm. The sample shows the Vickers hardness of 5.5 GPa, highest flexural strength of 431 MPa, compressive strength of 1033 MPa, and fracture toughness of 6.5 MPa·m1/2. No indentation cracks in Ti2AlCx were observed, indicative of a damage material nature. The reaction mechanism for the formation of SHS/PHIP-derived Ti2AlC is also discussed based on differential thermal analysis and x-ray diffraction results.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: xdhe@hit.edu.cn
b) This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

References

Hide All
1Barsoum, M.W.: The Mn+1AXn phases: A new class of solid; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201 (2000).
2Radovic, M., Barsoum, M.W., Ganguly, A., Zhen, T., Finkel, P., Kalidindi, S.R., and Lara-Curzio, E.: On the elastic properties and mechanical damping of Ti3SiC2, Ti3GeC2, Ti3Si0.5Al0.5C and Ti2AlC in the 300–1573 K. Acta Mater. 54, 2757 (2006).
3Barsoum, M.W., Bridkin, D., and Raghy, T.E.: Layered machinable ceramics for high temperature applications. Scr. Metall. Mater. 36, 535 (1997).
4Wang, X.H. and Zhou, Y.C.: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59, 303 (2003).
5Zhou, A.G., Barsoum, M.W., Basu, S., Kalidindi, S.R., and El-Raghy, T.: Incipient and regular kink bands in fully dense and 10 vol% porous Ti2AlC. Acta Mater. 54, 1631 (2006).
6Jeitschko, W., Nowotny, H., and Benesosky, F.: Kohlenstoffhaltige ternare verbindungen (H phase). Monatsh. Chem. 94, 672 (1963).
7Barsoum, M.W., Ali, M., and El-Raghy, T.: Processing and characterization of Ti2AlC, Ti2AlN, and Ti2Al0.5C N0.5. Metall. Mater. Trans. A 31, 1857 (2000).
8Wang, X.H. and Zhou, Y.C.: Solid-liquid reaction and simultaneous densification of polycrystalline Ti2AlC. Z. Metalkd. 93, 66 (2002).
9Zhou, W.B., Mei, B.C., Zhu, J.Q., and Hong, X.L.: Rapid synthesis of Ti2AlC by spark plasma sintering technique. Mater. Lett. 59, 131 (2005).
10Lopacinski, M., Puszynski, J., and Lis, J.: Synthesis of ternary titanium aluminum carbides using self-propagating high-temperature synthesis technique. J. Am. Ceram. Soc. 84, 3051 (2001).
11Guo, J.M., Chen, K.X., Ge, Z.B., Zhou, H.P., and Ning, X.S.: Effects of different Ti/C contents synthesized Ti3AlC2 powders in the Ti-Al-C system. Rare Metal Mater. Eng. 32, 561 (2003).
12Guo, J.M., Chen, K.X., Ge, Z.B., Zhou, H.P., and Ning, X.S.: Effects of TiC addition on combustion synthesis of Ti2AlC powders. Acta Metall. Sinica 39, 315 (2003).
13Liu, G.H., Chen, K.X., Zhou, H.P., Guo, J.M., Ren, K.G., and Ferreira, J.M.F.: Layered growth of Ti2AlC and Ti3AlC2 in combustion synthesis. Mater. Lett. 61, 779 (2007).
14Khoptiar, Y. and Gotman, I.: Ti2AlC ternary carbide synthesized by thermal explosion. Mater. Lett. 57, 72 (2002).
15Yeh, C.L. and Shen, Y.G.: Effects of TiC and Al4C3 addition on combustion synthesis of Ti2AlC. J. Alloys Compd. 470, 424 (2009).
16Yeh, C.L. and Shen, Y.G.: Formation of TiAl–Ti2AlC in situ composites by combustion synthesis. Intermetallics 17, 169 (2009).
17Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopolous, J.D.: Iterative minimization techniques for ab initio total energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992).
18Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964).
19Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).
20Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).
21Pfrommer, B.G., Cote, M., Louie, S.G., and Cohen, M.L.: Relaxation of crystals with the quasi-Newton Method. J. Comput. Phys. 131, 133 (1997).
22Gao, N.F., Miyamoto, Y., and Zhang, D.: Dense Ti3SiC2 prepared by reaction HIP. J. Mater. Sci. 34, 4385 (1999).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed