Skip to main content Accessibility help
×
Home

A rapid and scalable method for making mixed metal oxide alloys for enabling accelerated materials discovery

  • Babajide Patrick Ajayi (a1), Sudesh Kumari (a2), Daniel Jaramillo-Cabanzo (a3), Joshua Spurgeon (a4), Jacek Jasinski (a4) and Mahendra Sunkara (a5)...

Abstract

The synthesis technique that can be used to accelerate the discovery of materials for various energy conversion and storage applications is presented. Specifically, this technique allows a rapid and controlled synthesis of mixed metal oxide particles using plasma oxidation of liquid droplets containing mixed metal precursors. The conventional wet chemical methods for synthesis of multimetal oxide solid solutions often require time-consuming high pressure and temperature processes, and so the challenge is to develop rapid and scalable techniques with precise compositional control. The concept is demonstrated by synthesizing binary and ternary transition metal oxide solid solutions with control over entire composition range using metal precursor solution droplets oxidized using atmospheric oxygen plasma. The results show the selective formation of metastable spinel and the rocksalt solid solution phases with compositions over the entire range by tuning the metal precursor composition. The synthesized manganese doped nickel ferrite nanoparticles, NiMn z Fe2−z O4 (0 ≤ z ≤ 1), exhibits considerable electrocatalytic activity toward oxygen evolution reaction, achieving an overpotential of 0.39 V at a benchmarking current density of 10 mA/cm2 for a low manganese content of z = 0.20.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: mahendra@louisville.edu

References

Hide All
1. Yang, P. and Tarascon, J-M.: Towards systems materials engineering. Nat. Mater. 11, 560563 (2012).
2. Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 1572915735 (2006). doi: 10.1073/pnas.0603395103.
3. Cheng, F., Shen, J., Peng, B., Pan, Y., Tao, Z., and Chen, J.: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem. 3, 7984 (2011). (http://www.nature.com/nchem/journal/v3/n1/abs/nchem.931.html#supplementary-information).
4. Yandulov, D.V. and Schrock, R.R.: Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 7678 (2003). doi: 10.1126/science.1085326.
5. Armijo, J.: The kinetics and mechanism of solid-state spinel formation—A review and critique. Oxid. Met. 1, 171198 (1969).
6. Stein, A., Keller, S.W., and Mallouk, T.E.: Turning down the heat: Design and mechanism in solid-state synthesis. Science 259, 15581564 (1993).
7. Banger, K.K., Yamashita, Y., Mori, K., Peterson, R.L., Leedham, T., Rickard, J., and Sirringhaus, H.: Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat. Mater. 10, 4550 (2011). (http://www.nature.com/nmat/journal/v10/n1/abs/nmat2914.html#supplementary-information).
8. Rojas, R.M., Vila, E., García, O., and de Vidales, J.L.M.: Thermal behaviour and reactivity of manganese cobaltites MnxCo3−xO4(0.0≤ x ≤ 1.0) obtained at low temperature. J. Mater. Chem. 4, 16351639 (1994).
9. Matsushita, Y., Ueda, H., and Ueda, Y.: Flux crystal growth and thermal stabilities of LiV2O4 . Nat. Mater. 4, 845850 (2005).
10. Seley, D., Ayers, K., and Parkinson, B.: Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb. Sci. 15, 8289 (2013).
11. Bau, J.A., Li, P., Marenco, A.J., Trudel, S., Olsen, B.C., Luber, E.J., and Buriak, J.M.: Nickel/iron oxide nanocrystals with a nonequilibrium phase: Controlling size, shape, and composition. Chem. Mater. 26, 47964804 (2014). doi: 10.1021/cm501881a.
12. Pratsinis, S.E.: Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. Sci. 24, 197219 (1998). doi: 10.1016/S0360-1285(97)00028-2.
13. Messing, G.L., Zhang, S.C., and Jayanthi, G.V.: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 27072726 (1993).
14. Lewis, D.J.: Technique for producing mullite and other mixed-oxide systems. J. Am. Ceram. Soc. 74, 24102413 (1991).
15. Marshall, B., Telford, I., and Wood, R.: A field method for the determination of zinc oxide fume in air. Analyst 96, 569578 (1971).
16. Mueller, R., Jossen, R., Pratsinis, S.E., Watson, M., and Akhtar, M.K.: Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 87, 197202 (2004).
17. Katz, J.E., Gingrich, T.R., Santori, E.A., and Lewis, N.S.: Combinatorial synthesis and high-throughput photopotential and photocurrent screening of mixed-metal oxides for photoelectrochemical water splitting. Energy Environ. Sci. 2, 103112 (2009). doi: 10.1039/B812177J.
18. Kumar, V., Kim, J.H., Pendyala, C., Chernomordik, B., and Sunkara, M.K.: Gas-phase, bulk production of metal oxide nanowires and nanoparticles using a microwave plasma jet reactor. J. Phys. Chem. C 112, 1775017754 (2008). doi: 10.1021/jp8078315.
19. Hasegawa, M., Kato, Y., Kagawa, M., and Syono, Y.: Effect of additive oxides on ultrafine CeO2 particles synthesized by the spray-ICP technique. J. Mater. Sci. Lett. 15, 16081611 (1996).
20. Suzuki, M., Kagawa, M., Syono, Y., and Hirai, T.: Synthesis of ultrafine single-component oxide particles by the spray-ICP technique. J. Mater. Sci. 27, 679684 (1992).
21. Schaefer, M., Kumar, A., Mohan Sankaran, R., and Schlaf, R.: Synthesis and in vacuo deposition of iron oxide nanoparticles by microplasma-assisted decomposition of ferrocene. J. Appl. Phys. 116, 133703 (2014). doi: 10.1063/1.4897165.
22. Marr, M., Kuhn, J., Metcalfe, C., Harris, J., and Kesler, O.: Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying. J. Power Sources 245, 398405 (2014).
23. Chang, S.M., Tolava, R., Erwin, F., Yang, Y.J., Li, H.C., Lee, R.C., Wu, N.L., and Hsu, C.C.: One-step fast synthesis of Li4Ti5O12 particles using an atmospheric pressure plasma jet. J. Am. Ceram. Soc. 97, 708712 (2014).
24. Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 64746502 (2010). doi: 10.1021/cr100246c.
25. Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., and Shao-Horn, Y.: A Perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 13831385 (2011). doi: 10.1126/science.1212858.
26. Gerken, J.B., Chen, J.Y.C., Massé, R.C., Powell, A.B., and Stahl, S.S.: Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angew. Chem., Int. Ed. 51, 66766680 (2012). doi: 10.1002/anie.201201999.
27. Xiang, C., Suram, S.K., Haber, J.A., Guevarra, D.W., Soedarmadji, E., Jin, J., and Gregoire, J.M.: High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb. Sci. 16, 4752 (2014). doi: 10.1021/co400151h.
28. Burns, R.G.: The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese (IV) oxides. Geochim. Cosmochim. Acta 40, 95102 (1976). doi: 10.1016/0016-7037(76)90197-6.
29. Ko, S.W., Li, J., Podraza, N.J., Dickey, E.C., and Trolier-McKinstry, S.: Spin spray-deposited nickel manganite thermistor films for microbolometer applications. J. Am. Ceram. Soc. 94, 516523 (2011). doi: 10.1111/j.1551-2916.2010.04097.x.
30. Noh, H-J., Yeo, S., Kang, J-S., Zhang, C.L., Cheong, S-W., Oh, S-J., and Johnson, P.D.: Jahn-Teller effect in spinel manganites probed by soft x-ray absorption spectroscopy. Appl. Phys. Lett. 88, 081911 (2006). doi: 10.1063/1.2178474.
31. Miyahara, S.: Jahn-Teller distortion in magnetic spinels. J. Phys. Soc. Jpn. 17, 181184 (1962).
32. de Györgyfalva, G. and Reaney, I.: Decomposition of NiMn2O4 spinels. J. Mater. Res. 18, 13011308 (2003).
33. Díez, A., Schmidt, R., Sagua, A.E., Frechero, M.A., Matesanz, E., Leon, C., and Morán, E.: Structure and physical properties of nickel manganite NiMn2O4 obtained from nickel permanganate precursor. J. Eur. Ceram. Soc. 30, 26172624 (2010). doi: 10.1016/j.jeurceramsoc.2010.04.032.
34. Xiao-Xia, T., Manthiram, A., and Goodenough, J.B.: NiMn2O4 revisited. J. Less-Common Met. 156, 357368 (1989). doi: 10.1016/0022-5088(89)90431-1.
35. Weil, L., Bertaut, F., and Bochirol, L.: Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J. Phys. Radium 11, 208212 (1950). doi: 10.1051/jphysrad:01950001105020800.
36. Birajdar, A.A., Shirsath, S.E., Kadam, R.H., Patange, S.M., Mane, D.R., and Shitre, A.R.: Rietveld structure refinement and cation distribution of Cr. ISRN Ceram. 2012, 5 (2012). doi: 10.5402/2012/876123.
37. Chekin, F., Tahermansouri, H., and Besharat, M.: Nickel oxide nanoparticles prepared by gelatin and their application toward the oxygen evolution reaction. J. Solid State Electrochem. 18, 747753 (2014). doi: 10.1007/s10008-013-2313-y.
38. Yeager, M.P., Su, D., Marinković, N.S., and Teng, X.: Pseudocapacitive NiO fine nanoparticles for supercapacitor reactions. J. Electrochem. Soc. 159, A1598A1603 (2012). doi: 10.1149/2.025210jes.
39. Trotochaud, L., Ranney, J.K., Williams, K.N., and Boettcher, S.W.: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 1725317261 (2012). doi: 10.1021/ja307507a.
40. Bao, J., Zhang, X., Fan, B., Zhang, J., Zhou, M., Yang, W., Hu, X., Wang, H., Pan, B., and Xie, Y.: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 127, 75077512 (2015). doi: 10.1002/anie.201502226.
41. Singh, R.N., Singh, J.P., Nguyen Cong, H., and Chartier, P.: Effect of partial substitution of Cr on electrocatalytic properties of towards -evolution in alkaline medium. Int. J. Hydrogen Energy 31, 13721378 (2006). doi: 10.1016/j.ijhydene.2005.11.012.
42. Singh, R.N., Singh, J.P., Lal, B., Thomas, M.J.K., and Bera, S.: New NiFe2−xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim. Acta 51, 55155523 (2006). doi: 10.1016/j.electacta.2006.02.028.
43. Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., Liu, Z., Kaya, S., Nordlund, D., Ogasawara, H., Toney, M.F., and Nilsson, A.: Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454460 (2010). (http://www.nature.com/nchem/journal/v2/n6/suppinfo/nchem.623_S1.html).
44. Jakšić, M.M.: Electrocatalysis of hydrogen evolution in the light of the Brewer—Engel theory for bonding in metals and intermetallic phases. Electrochim. Acta 29, 15391550 (1984). doi: 10.1016/0013-4686(84)85007-0.
45. Brinley, E., Babu, K.S., and Seal, S.: The solution precursor plasma spray processing of nanomaterials. JOM 59, 5459 (2007). doi: 10.1007/s11837-007-0090-8.

Keywords

Related content

Powered by UNSILO

A rapid and scalable method for making mixed metal oxide alloys for enabling accelerated materials discovery

  • Babajide Patrick Ajayi (a1), Sudesh Kumari (a2), Daniel Jaramillo-Cabanzo (a3), Joshua Spurgeon (a4), Jacek Jasinski (a4) and Mahendra Sunkara (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.