Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-06T22:51:05.664Z Has data issue: false hasContentIssue false

Raman spectroscopy of CaTiO3-based perovskite solid solutions

Published online by Cambridge University Press:  03 March 2011

H. Zheng
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
I.M. Reaney
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
G.D.C. Csete de Györgyfalva
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
R. Ubic
Affiliation:
Department of Materials, Queen Mary, University of London, London E1 4NS, United Kingdom
J. Yarwood
Affiliation:
Materials Research Institute, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
M.P. Seabra
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro, Portugal
V.M. Ferreira
Affiliation:
Department of Ceramics and Glass Engineering, University of Aveiro, Aveiro, Portugal
Get access

Abstract

Perovskite-structured solid solutions intended for use as microwave dielectric resonators were studied by Raman spectroscopy. Two distinct categories were investigated: (i) simple perovskite–simple perovskite solid solutions, that is, CaTiO3–SrTiO3 (CTST), CaTiO3–CaZrO3 (CTCZ), CaTiO3–NdAlO3 (CTNA), and CaTiO3–LaGaO3 (CTLG); and (ii) simple perovskite–complex perovskite solid solutions, such as CaTiO3–SrMg1/3Nb2/3O3 (CTSMN). In the latter category, the influence of A-site ion radius was also addressed by examining 0.5CaTiO3– 0.5LaMg1/2Ti1/2O3 (0.5CT–0.5LMT), 0.5SrTiO3 (ST)–0.5LMT, and 0.5BaTiO3 (BT)–0.5LMT. Raman data from the end members and solid solutions are compared, paying particular attention to F2g and A1g mode bands, often associated with ordering of B-site species.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tamura, H., Sagala, D.A. and Wakino, K., Jpn. J. Appl. Phys. 25 787 (1986).CrossRefGoogle Scholar
2Wise, P.L., Reaney, I.M., Lee, W.E., Price, T.J., Iddles, D.M. and Cannell, D.S., J. Euro. Ceram. Soc. 21 1723 (2001).CrossRefGoogle Scholar
3Jančar, B., Suvorov, D. and Valant, M., J. Mater. Sci. Lett. 20 71 (2001).CrossRefGoogle Scholar
4Nomura, S., Ferroelectrics 49 61 (1983).CrossRefGoogle Scholar
5Galasso, F.S.Structure Properties and Preparation of Perovskite Type Compounds (Pergamon Press, Oxford, U.K., 1969).Google Scholar
6Reaney, I.M., Petzelt, J., Voitsekhovskii, V.V., Chu, F. and Setter, N., J. Appl. Phys. 76 2086 (1994).CrossRefGoogle Scholar
7Husson, E., Abello, L. and Morell, A., Mater. Res. Bull. 25 539 (1990).CrossRefGoogle Scholar
8Siny, I.G., Tao, R., Katiyar, R.S., Guo, R. and Bhalla, A.S., J. Phys. Chem. Solids 59 181 (1998).CrossRefGoogle Scholar
9Tao, R., Siny, I.G., Katiyar, R.S., Guo, R. and Bhalla, A.S., J. Raman Spectrosc. 27 873 (1996).3.0.CO;2-F>CrossRefGoogle Scholar
10Siny, I.G., Katiyar, R.S. and Bhalla, A.S., J. Raman Spectrosc. 29 385 (1998).3.0.CO;2-F>CrossRefGoogle Scholar
11Balachandran, U. and Eror, N.G., Solid State Commun. 44 815 (1982).CrossRefGoogle Scholar
12Scott, J.F., Phys. Rev. 183 823 (1969).CrossRefGoogle Scholar
13Bismayer, U., Devarajan, V. and Groves, P., J. Phys., Condens. Matter 1 6977 (1989).CrossRefGoogle Scholar
14Idink, H. and White, W.B., J. Appl. Phys. 76 1789 (1994).CrossRefGoogle Scholar
15Zheng, H., de Györgyfalva, G.D.C. Csete, Quimby, R., Bagshaw, H., Ubic, R., Reaney, I.M. and Yarwood, J.J. Euro. Ceram. Soc. 85 1753–1756 (2002).Google Scholar
16Seabra, M.P. and Ferreira, V.M., Mater. Res. Bull. 37 255 (2002).CrossRefGoogle Scholar
17Granado, E., Moreno, N.O., García, A., Sanjurjo, J.A., Rettori, C., Torriani, I., Oseroff, S.B., Neumeier, J.J., McClellan, K.J., Cheong, S.W. and Tokura, Y., Phys. Rev. B 58 11435 (1998).CrossRefGoogle Scholar
18Thomas, H. and Müller, K.A., Phys. Rev. Lett. 21 1256 (1968).CrossRefGoogle Scholar
19Jiang, F., Kojima, S., Zhao, C. and Feng, C., Appl. Phys. Lett. 79 3938 (2001).CrossRefGoogle Scholar
20Lebon, A., El Marssi, M., Farhi, R., Dammak, H. and Calvarin, G., J. Appl. Phys. 89 3947 (2001).CrossRefGoogle Scholar
21Ratheesh, R., Wöhlecke, M., Berge, B., Wahlbrink, T., Haeuseler, H., Rühl, E., Blachnik, R., Balan, P., Santha, N. and Sebastian, M.T., J. Appl. Phys. 88 2813 (2000).CrossRefGoogle Scholar
22Jiang, F., Kojima, S., Zhao, C. and Feng, C., J. Appl. Phys. 88 3608 (2000).CrossRefGoogle Scholar
23Bianchi, U., Kleemann, W. and Bednorz, J.G., J. Phys., Condens. Matter 6 1229 (1994).CrossRefGoogle Scholar
24Ouillon, R., Pinan-Lucarre, J-P, Ranson, P., Pruzan, P., Mishra, S.K., Ranjan, R. and Pandey, D.J. Phys., Condens. Matter 14 2079 (2002).CrossRefGoogle Scholar
25Derighetti, B., Drumheller, J.E., Laves, F., Müller, K.A. and Waldner, F., Acta Cryst. 18 557 (1965).CrossRefGoogle Scholar
26Harley, R.T., Hayes, W., Perry, A.M. and Smith, S.R.P., J. Phys. C, Solid State Phys. 6 2382 (1973).CrossRefGoogle Scholar
27Hirata, T., Ishioka, K. and Kitajima, M., J. Solid State Chem. 124 353 (1996).CrossRefGoogle Scholar
28Sammes, N.M., Tompsett, G.A., Phillips, R.J. and Cartner, A.M., Solid State Ionics 111 1 (1998).CrossRefGoogle Scholar
29Inagaki, T., Miura, K., Yoshida, H., Fujita, J. and Nishimura, M., Solid State Ionics 118 265 (1999).CrossRefGoogle Scholar
30Koopmans, H.J.A., Van De Velde, G.M.H. and Gellings, P.J., Acta Cryst. C 39 1323 (1983).CrossRefGoogle Scholar
31Glazer, A.M., Acta Cryst. B 28 3384 (1972).CrossRefGoogle Scholar
32Perry, C.H., McCarthy, D.J. and Rupprecht, G., Phys. Rev. 138 1537 (1965).CrossRefGoogle Scholar
33Orera, V.M., Pecharromán, C., Peña, J.I., Merino, R.I. and Serna, C.J., J. Phys., Condens. Matter 10 7501 (1998).CrossRefGoogle Scholar
34Lee, D.Y., Yoon, S.J., Yeo, J.H., Nahm, S., Park, J.H., Whang, K.C. and Ahn, B.G., J. Mater. Sci. Lett. 19 131 (2000).CrossRefGoogle Scholar
35Meden, A. and Ceh, M., Mater. Sci. Forum 278/281, 773 (1998).CrossRefGoogle Scholar
36Setter, N. and Laulicht, I., Appl. Spectrosc. 41 526 (1987).CrossRefGoogle Scholar
37Boulesteix, C., Caranoni, C., Kang, C.Z., Sapozhnikova, L S., Siny, I.G. and Smirnova, T.A.Ferroelectrics 107 241 (1990).CrossRefGoogle Scholar
38Smolensky, G.A., Siny, I.G., Pisarev, R.V. and Kuzminov, E.G., Ferroelectrics 12 135 (1976).CrossRefGoogle Scholar
39Shannon, R.D. and Prewitt, C.T., Acta Cryst. B 25 925 (1969).CrossRefGoogle Scholar
40Zheng, H., Bagshaw, H., de Györgyfalva, G.D.C. Csete, Reaney, I.M., Ubic, R. and Yarwood, J.J. Appl. Phys., 94 2948–2956 (2003).Google Scholar
41Webb, S.J., Breeze, J., Scott, R.I., Cannell, D.S., Iddles, D.M. and McN Alford, N., J. Am. Ceram. Soc. 85 1753 (2002).CrossRefGoogle Scholar
42Kawashima, S., Nishida, M., Ueda, I. and Ouchi, H., J. Am. Ceram. Soc. 66 421 (1983).CrossRefGoogle Scholar
43Davies, P.K., Tong, J. and Negas, T., J. Am. Ceram. Soc. 80 1727 (1997).CrossRefGoogle Scholar
44Kim, I.T., Kim, Y.H. and Chung, S.J., Jpn. J. Appl. Phys. 34 4096 (1995).CrossRefGoogle Scholar
45Nenasheva, E.A., Mudroliubova, L.P. and Kartenko, N.F., J. Euro Ceram. Soc., 23 2443–2448. (2003).CrossRefGoogle Scholar