Skip to main content Accessibility help
×
Home

Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications

  • Jiwei Lu (a1), S. Joseph Poon (a2), Stuart A. Wolf (a3), Bradley D. Weaver (a4), Patrick J. McMarr (a4), Harold Hughes (a4) and Eugene Chen (a5)...

Abstract

Spintronics utilizes spin or magnetism to provide new ways to store and process information and is primarily associated with the utilization of spin polarized currents in memory and logic devices. With the end of silicon transistor technology in sight, spintronics can provide new paradigms for information processing and storage. Compared to charge based electronics, the advantages of magnetism/spin based devices are nonvolatility and ultra low power. In particular, magnetoresistive random access memories (MRAMs) are known to be “Rad Hard” [HXNV0100 64K x 16 Non-Volatile Magnetic RAM (www.honeywell.com/aerospace), S. Gerardin and A. Paccagnella, IEEE Trans. Nucl. Sci. 57(6), 3016–3039 (2010), R.R. Katti, J. Lintz, L. Sundstrom, T. Marques, S. Scoppettuolo, and D. Martin, Proceedings of IEEE Radiation Effects Data Workshop, 103–105 (2009)] and are considered to be critical components for space and military systems due to their very low power consumption and nonvolatility. However, advances in the magnetic nanostructures and new materials for the scalability of MRAM and other potential applications require a re-evaluation of their radiation hardness. This review focuses mainly on recent progress in understanding the effects of irradiation on the magnetic materials and magnetic structures that are related to MRAM technology. Up to date, the most pronounced effects on the microstructures and the properties are linked to the displacement damage associated with heavy ion irradiation; however, the thermal effect is also important as it acts as an annealing process to recover the damage partially. Critical metrics for the magnetic tunnel junctions for postmortem characterizations will also be discussed. Finally, with the introduction of new perpendicular magnetic layers and the very thin MgO barrier layer in the next generation MRAM, the effects of the ionization damage shall be studied in the future.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jl5tk@virginia.edu

Footnotes

Hide All

Contributing Editor: Joel Ribis

Footnotes

References

Hide All
1. HXNV0100 64K x 16 Non-Volatile Magnetic RAM (www.honeywell.com/aerospace).
2. Gerardin, S. and Paccagnella, A.: Present and future non-volatile memories for space. IEEE Trans. Nucl. Sci. 57(6), 30163039 (2010).
3. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., Daughton, J.M., von Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., and Treger, D.M.: Spintronics: A spin-based electronics vision for the future. Science 294(5546), 14881495 (2001).
4. Baibich, M.N., Broto, J.M., Fert, A., Van Dau, F.N., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chazelas, J.: Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 24722475 (1988).
5. Schuller, I., Falco, C.M., Hilliard, J., Ketterson, J., Thaler, B., Lacoe, R., and Dee, R.: Transport properties of the compositionally modulation alloy Cu/Ni. AIP Conf. Proc. 53(1), 417421 (1979).
6. Fullerton, E.E. and Schuller, I.K.: The 2007 Nobel Prize in physics: Magnetism and transport at the nanoscale. ACS Nano 1(5), 384389 (2007).
7. Prinz, G.A.: Magnetoelectronics. Science 282(5394), 16601663 (1998).
8. Tedrow, P.M. and Meservey, R.: Spin-dependent tunneling into ferromagnetic nickel. Phys. Rev. Lett. 26(4), 192195 (1971).
9. Tedrow, P.M. and Meservey, R.: Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys. Rev. B 7(1), 318326 (1973).
10. Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54(3), 225226 (1975).
11. Moodera, J.S., Kinder, L.R., Wong, T.M., and Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16), 32733276 (1995).
12. Miyazaki, T. and Tezuka, N.: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139(3), L231L234 (1995).
13. Wang, D., Nordman, C., Daughton, J.M., Qian, Z., and Fink, J.: 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn. 40(4), 22692271 (2004).
14. Butler, W.H., Zhang, X.G., Schulthess, T.C., and MacLaren, J.M.: Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63(5), 054416 (2001).
15. Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., and Yang, S-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862867 (2004).
16. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868871 (2004).
17. Lee, Y.M., Hayakawa, J., Ikeda, S., Matsukura, F., and Ohno, H.: Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90(21), 212507 (2007).
18. Nogués, J. and Schuller, I.K.: Exchange bias. J. Magn. Magn. Mater. 192(2), 203232 (1999).
19. Wolf, S.A., Jiwei, L., Stan, M.R., Chen, E., and Treger, D.M.: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98(12), 21552168 (2010).
20. Engel, B.N., Akerman, J., Butcher, B., Dave, R.W., DeHerrera, M., Durlam, M., Grynkewich, G., Janesky, J., Pietambaram, S.V., Rizzo, N.D., Slaughter, J.M., Smith, K., Sun, J.J., and Tehrani, S.: A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41(1), 132136 (2005).
21. Slonczewski, J.C.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1–2), L1L7 (1996).
22. Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54(13), 93539358 (1996).
23. Chappert, C., Fert, A., and Van Dau, F.N.: The emergence of spin electronics in data storage. Nat. Mater. 6(11), 813823 (2007).
24. Sun, J.Z., Monsma, D.J., Abraham, D.W., Rooks, M.J., and Koch, R.H.: Batch-fabricated spin-injection magnetic switches. Appl. Phys. Lett. 81(12), 22022204 (2002).
25. Pufall, M.R., Rippard, W.H., and Silva, T.J.: Materials dependence of the spin-momentum transfer efficiency and critical current in ferromagnetic metal/Cu multilayers. Appl. Phys. Lett. 83(2), 323325 (2003).
26. Chen, E., Apalkov, D., Diao, Z., Driskill-Smith, A., Druist, D., Lottis, D., Nikitin, V., Tang, X., Watts, S., Wang, S., Wolf, S.A., Ghosh, A.W., Lu, J.W., Poon, S.J., Stan, M., Butler, W.H., Gupta, S., Mewes, C.K.A., Mewes, T., and Visscher, P.B.: Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46(6), 18731878 (2010).
27. Kishi, T., Yoda, H., Kai, T., Nagase, T., Kitagawa, E., Yoshikawa, M., Nishiyama, K., Daibou, T., Nagamine, M., Amano, M., Takahashi, S., Nakayama, M., Shimomura, N., Aikawa, H., Ikegawa, S., Yuasa, S., Yakushiji, K., Kubota, H., Fukushima, A., Oogane, M., Miyazaki, T., and Ando, K.: Lower-current and fast switching of a perpendicular TMR for high speed and high density spin-transfer-torque MRAM. In IEEE International Electron Devices Meeting, San Francisco, CA, 2008.
28. Zhu, X. and Zhu, J-G.: Spin torque and field-driven perpendicular MRAM designs scalable to multi-Gb/chip capacity. IEEE Trans. Magn. 42(10), 27392741 (2006).
30. Weaver, B.D. and Summers, G.P.: Displacement Damage Effects in High Temperature Superconductors (Nova Science Publishers, New York, NY, 2003).
31. Jun, I., Xapsos, M.A., Messenger, S.R., Burke, E.A., Walters, R.J., Summers, G.R., and Jordan, T.: Proton nonionizing energy loss (NIEL) for device applications. IEEE Trans. Nucl. Sci. 50(6), 19241928 (2003).
32. Shockley, W., Hollomon, J.H., Maurer, R., and Seitz, F.: Imperfections in Nearly Perfect Crystals (John Wiley and Sons, London, UK, 1952).
33. Katti, R.R., Lintz, J., Sundstrom, L., Marques, T., Scoppettuolo, S., and Martin, D.: Heavy-ion and total ionizing dose (TID) performance of a 1 Mbit magnetoresistive random access memory (MRAM). In Proceedings of IEEE Radiation Effects Data Workshop, Quebec City, QC, 2009; pp. 103105.
34. Banerjee, T., Som, T., Kanjilal, D., and Moodera, J.S.: Effect of ion irradiation on the characteristics of magnetic tunnel junctions. Eur. Phys. J.: Appl. Phys. 32(2), 115118 (2005).
35. Conraux, Y., Nozieres, J.P., Da Costa, V., Toulemonde, M., and Ounadjela, K.: Effects of swift heavy ion bombardment on magnetic tunnel junction functional properties. J. Appl. Phys. 93(10), 73017303 (2003).
36. Schmalhorst, J. and Reiss, G.: Transport properties of magnetic tunnel junctions with ion irradiated AlO x barriers. J. Magn. Magn. Mater. 272, E1485E1486 (2004).
37. Sacher, M.D., Sauerwald, J., Schmalhorst, J., and Reiss, G.: Influence of noble-gas ion irradiation on alumina barrier of magnetic tunnel junctions. J. Appl. Phys. 98(10), 103532 (2005).
38. Qi, X.J., Wang, Y.G., Yan, J., Miao, X.F., and Li, Z.Q.: Influence of Ga+ ion irradiation on thermal relaxation of exchange bias field in the IrMn-based magnetic tunnel junctions. Solid State Commun. 150(35–36), 16931697 (2010).
39. Schmalhorst, J. and Reiss, G.: Temperature and bias-voltage dependent transport in magnetic tunnel junctions with low energy Ar-ion irradiated barriers. Phys. Rev. B 68(22), 224437 (2003).
40. Snoeck, E., Baules, P., BenAssayag, G., Tiusan, C., Greullet, F., Hehn, M., and Schuhl, A.: Modulation of interlayer exchange coupling by ion irradiation in magnetic tunnel junctions. J. Phys.: Condens. Matter 20(5), 055219 (2008).
41. Gibaud, A. and Hazra, S.: X-ray reflectivity and diffuse scattering. Curr. Sci. India 78(12), 14671477 (2000).
42. Bowen, D.K. and Tanner, B.K.: X-Ray Metrology in Semiconductor Manufacturing (CRC Press, Boca Raton, FL, 2006).
43. Brower, D.T., Revay, R.E., and Huang, T.C.: A study of X-ray reflectivity data analysis methods for thin film thickness determination. Powder Diffr. 11, 114 (1996).
44. Hughes, H., Bussmann, K., McMarr, P.J., Shu-Fan, C., Shull, R., Chen, A.P., Schafer, S., Mewes, T., Ong, A., Chen, E., Mendenhall, M.H., and Reed, R.A.: Radiation studies of spin-transfer torque materials and devices. IEEE Trans. Nucl. Sci. 59(6), 30273033 (2012).
45. Ren, F.H., Jander, A., Dhagat, P., and Nordman, C.: Radiation tolerance of magnetic tunnel junctions with MgO tunnel barriers. IEEE Trans. Nucl. Sci. 59(6), 30343038 (2012).
46. Kobayashi, D., Kakehashi, Y., Hirose, K., Onoda, S., Makino, T., Ohshima, T., Ikeda, S., Yamanouchi, M., Sato, H., Enobio, E.C., Endoh, T., and Ohno, H.: Influence of heavy ion irradiation on perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions. IEEE Trans. Nucl. Sci. 61(4), 17101716 (2014).
47. Chappert, C., Bernas, H., Ferré, J., Kottler, V., Jamet, J-P., Chen, Y., Cambril, E., Devolder, T., Rousseaux, F., Mathet, V., and Launois, H.: Planar patterned magnetic media obtained by ion irradiation. Science 280(5371), 19191922 (1998).
48. Ravelosona, D., Chappert, C., Mathet, V., and Bernas, H.: Chemical order induced by ion irradiation in FePt (001) films. Appl. Phys. Lett. 76(2), 236238 (2000).
49. Mougin, A., Mewes, T., Jung, M., Engel, D., Ehresmann, A., Schmoranzer, H., Fassbender, J., and Hillebrands, B.: Local manipulation and reversal of the exchange bias field by ion irradiation in FeNi/FeMn double layers. Phys. Rev. B 63(6), 060409 (2001).
50. Lai, C-H., Yang, C-H., and Chiang, C.C.: Ion-irradiation-induced direct ordering of L10 FePt phase. Appl. Phys. Lett. 83(22), 45504552 (2003).
51. Esquinazi, P., Spemann, D., Hohne, R., Setzer, A., Han, K.H., and Butz, T.: Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 91(22), 227201 (2003).
52. Brown, R.D., Cost, J.R., and Stanley, J.T.: Irradiation-induced decay of magnetic-permeability of metglas 2605s-3 and mumetal. J. Nucl. Mater. 131(1), 3743 (1985).
53. Fisher, D.G.: Irradiation and thermal annealing effects in amorphous magnetic alloys. Ph.D. Thesis, University of Delaware, 1983.
54. Park, D.G., Kim, C.G., Kim, H.C., Hong, J.H., and Kim, I.S.: Effect of neutron irradiation on magnetic properties in the low alloy Ni-Mo steel SA508-3. J. Appl. Phys. 81(8), 41254127 (1997).
55. Kim, H.C., Yu, S.C., Kim, C.G., Han, H.S., Cho, W.K., and Kim, D.H.: Effect of neutron irradiation on soft magnetic properties in amorphous FeCuNbSiB alloy. J. Appl. Phys. 87(9), 71157117 (2000).
56. Zhang, J.M., Lian, J., Fuentes, A.F., Zhang, F.X., Lang, M., Lu, F.Y., and Ewing, R.C.: Enhanced radiation resistance of nanocrystalline pyrochlore Gd2(Ti0.65Zr0.35)2O7 . Appl. Phys. Lett. 94(24), 243110 (2009).
57. Zhang, J.M., Lian, J., Zhang, F.X., Wang, J.W., Fuentes, A.F., and Ewing, R.C.: Intrinsic structural disorder and radiation response of nanocrystalline Gd2(Ti0.65Zr0.35)2O7 pyrochlore. J. Phys. Chem. C 114(27), 1181011815 (2010).
58. Skorvanek, I., Gerling, R., Graf, T., Fricke, M., and Hesse, J.: Neutron-irradiation effects on the structural, magnetic and mechanical-properties of amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9. IEEE Trans. Magn. 30(2), 548551 (1994).
59. Rose, M., Balogh, A.G., and Hahn, H.: Nucl. Instrum. Methods Phys. Res., Sect. B 127, 119122 (1997).
60. Narayan, J.: Critical size for defects in nanostructured materials. J. Appl. Phys. 100(3), 034309 (2006).
61. Kuwahara, K., Yamamoto, S., and Kobayash, M.: Effect of deuteron irradiation on magnetic-anisotropy of thin Ni-Fe films. Jpn. J. Appl. Phys. 12(10), 15671571 (1973).
62. Fassbender, J. and McCord, J.: Control of saturation magnetization, anisotropy, and damping due to Ni implantation in thin Ni81Fe19 layers. Appl. Phys. Lett. 88(25), 252501 (2006).
63. Gupta, A., Paul, A., Gupta, R., Avasthi, D.K., and Principi, G.: The effect of swift heavy ion irradiation on perpendicular magnetic anisotropy in Fe-Tb multilayers. J. Phys.: Condens. Matter 10(43), 96699680 (1998).
64. Blon, T., Chassaing, D., Ben Assayag, G., Hrabovsky, D., Bobo, J.F., Ousset, J.C., and Snoeck, E.: Effects of ion irradiation on cobalt thin films magnetic anisotropy. J. Magn. Magn. Mater. 272, E803E805 (2004).
65. Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Tang, M., Ishimaru, M., Corish, S.M., Stanek, C.R., and Uberuaga, B.P.: Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides. Nat. Mater. 6(3), 217223 (2007).
66. Ono, F., Kanamitsu, A., Matsushima, Y., Chimi, Y., Ishikawa, N., Kambara, T., and Iwase, A.: Effect of high-energy ion irradiation on magnetic properties in Fe-Pt invar alloys. Nucl. Instrum. Methods Phys. Res., Sect. B 245(1), 166170 (2006).
67. Ono, F., Chimi, Y., Ishikawa, N., Kanamitsu, H., Matsushima, Y., Iwase, A., and Kambara, T.: Modification of Fe-Pd invar alloys by high-energy heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 257, 402405 (2007).
68. Anuniwat, N., Cui, Y.S., Wolf, S.A., Lu, J.W., and Weaver, B.D.: Recovery of the chemical ordering in L10 MnAl epitaxial thin films irradiated by 2 MeV protons. Appl. Phys. Lett. 102(10), 102406 (2013).
69. Yanar, C., Wiezorek, J.M.K., Radmilovic, V., and Soffa, W.A.: Massive transformation and the formation of the ferromagnetic L10 phase in manganese-aluminum-based alloys. Metall. Mater. Trans. A 33(8), 24132423 (2002).
70. Koch, A.J.J., Hokkeling, P., Steeg, M.G.v.d., and de Vos, K.J.: Modifications of structure and magnetic properties of L10 MnAl and MnGa films by Kr+ ion irradiation. J. Appl. Phys. 31(5), S75S77 (1960).
71. Sands, T., Harbison, J.P., Leadbeater, M.L., Allen, J.S.J., Hull, G.W., Ramesh, R., and Keramidas, V.G.: Epitaxial ferromagnetic τ‐MnAl films on GaAs. Appl. Phys. Lett. 57(24), 26092611 (1990).
72. Bali, R., Wintz, S., Meutzner, F., Hubner, R., Boucher, R., Unal, A.A., Valencia, S., Neudert, A., Potzger, K., Bauch, J., Kronast, F., Facsko, S., Lindner, J., and Fassbender, J.: Printing nearly-discrete magnetic patterns using chemical disorder induced ferromagnetism. Nano Lett. 14(2), 435441 (2014).
73. Zamora, L.E., Perez Alcazar, G.A., Velez, G.Y., Betancur, J.D., Marco, J.F., Romero, J.J., Martinez, A., Palomares, F.J., and Gonzalez, J.M.: Disorder effect on the magnetic behavior of mechanically alloyed Fe1−x Al x (0.2 <= x <= 0.4). Phys. Rev. B 79(9) (2009).
74. Sort, J., Concustell, A., Menendez, E., Surinach, S., Rao, K.V., Deevi, S.C., Baro, M.D., and Nogues, J.: Periodic arrays of micrometer and sub-micrometer magnetic structures prepared by nanoindentation of a nonmagnetic intermetallic compound. Adv. Mater. 18(13), 1717 (2006).
75. Trautvetter, M., Wiedwald, U., Paul, H., Minkow, A., and Ziemann, P.: Thermally driven solid-phase epitaxy of laser-ablated amorphous AlFe films on (0001)-oriented sapphire single crystals. Appl. Phys. A 102(3), 725730 (2011).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed