Skip to main content Accessibility help
×
Home

Quantitative compositional analysis of In x Ga1−x N/GaN multiquantum wells in light-emitting diodes

  • Youngji Cho (a1), Jung Sik Park (a2), Jun-Mo Yang (a2), Kyung Jin Park (a2), Yun Chang Park (a2), Jiho Chang (a3), Sang Geul Lee (a4) and Kwan-Young Han (a5)...

Abstract

A quantitative analysis of In concentration in InGaN/GaN multiquantum wells in light-emitting diodes was carried out using high-resolution transmission electron microscopy (HRTEM) and high-angle annual dark-field scanning TEM (HAADF-STEM). The In composition in InGaN was evaluated by the precise measurement of c-lattice parameters in the HRTEM micrographs, which increase with increasing In composition. The reliability of the results was confirmed by high-resolution x-ray diffraction measurements and Rutherford backscattering spectrometry. Quantitative In compositions can, therefore, be determined using HRTEM. We tried to determine the quantitative In compositions in InGaN by analyzing the intensity profiles of the HAADF-STEM images. However, several problems were encountered, such as differences in the thickness of the region observed, carbon contamination, and ion beam damage during specimen preparation. Therefore, relative differences in composition were observed in the HAADF-STEM images.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jmyang@nnfc.re.kr

References

Hide All
1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushida, T., Suhimoto, Y., and Kiyoku, H.: Continuous‐wave operation of InGaN multi‐quantum‐well‐structure laser diodes at 233 K. Appl. Phys. Lett. 69, 30343036 (1996).
2. Morkoç, H., Strite, G.S., Gao, G.B., Lin, M.E., Sverdlov, B., and Burns, M.: Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies. J. Appl. Phys. 76, 13631398 (1997).
3. Pearton, S.J., Kang, B.S., Kim, S., Ren, F., Gila, B.P., Abernathy, C.R., Lin, J., and Chu, S.N.G.: GaN-based diodes and transistors for chemical, gas, biological and pressure sensing. J. Phys.: Condens. Matter 16, R961R994 (2004).
4. Shmagin, I.K., Muth, J.F., Kolbas, R.M., Dupuis, R.D., Grudowski, P.A., Eiting, C.J., Park, J., Shelton, B.S., and Lambert, D.J.H.: Optical data storage in InGaN/GaN heterostructures. Appl. Phys. Lett. 71, 13821384 (1997).
5. McCluskey, M.D., Romano, L.T., Krusor, B.S., and Johnson, N.M.: Interdiffusion of In and Ga in InGaN/GaN quantum wells. Appl. Phys. Lett. 73, 12811283 (1998).
6. Mukai, T., Yamada, M., and Nakamura, S.: Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes. Jpn. J. Appl. Phys. 38, 39763981 (1999).
7. Ko, Y., Song, J., Leung, B., Han, J., and Cho, Y.: Multi-color broadband visible light source via GaN hexagonal annular structure. Sci. Rep. 4, 5514 (2014).
8. Ramaiah, K.S., Su, Y.K., Chang, S.J., Kerr, B., Liu, H.P., and Chen, I.G.: Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition. Appl. Phys. Lett. 84, 33073309 (2004).
9. Pereira, S., Pereira, E., Alves, E., Barradas, N.P., O’Donnell, K.P., Liu, C., Deatcher, C.J., and Watson, I.M.: Depth profiling InGaN/GaN multiple quantum wells by Rutherford backscattering: The role of intermixing. Appl. Phys. Lett. 81, 29502952 (2002).
10. Marona, L., Perlin, P., Czernecki, R., Leszczyński, M., Boćkowski, M., Jakiela, R., Suski, T., and Najda, S.P.: Secondary ions mass spectroscopy measurements of dopant impurities in highly stressed InGaN laser diodes. Appl. Phys. Lett. 98, 241115 (2011).
11. Van de Walle, C.G., McCluskey, M.D., Master, C.P., Romano, L.T., and Johnson, N.M.: Large and composition-dependent band gap bowing in InxGa1−xN alloys. Mater. Sci. Eng., B 59, 274278 (1999).
12. Kisielowskia, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O’Keefe, M.A., and Thust, A.: Imaging columns of the light elements carbon, nitrogen and oxygen with sub Angstrom resolution. Ultramicroscopy 89, 243 (2001).
13. Li, J., Zhao, C., Xing, Y., Su, S., and Cheng, B.: Full-field strain mapping at a Ge/Si heterostructure interface. Materials 6, 2130 (2013).
14. Galindo, P., Kret, S., Sanchez, A.M., Laval, J., Yanez, A., Pizarro, J., Guerrero, E., Ben, T., and Molina, S.I.: The Peak Pairs algorithm for strain mapping from HRTEM images. Ultramicroscopy 107, 11861193 (2007).
15. Pennycook, S.J., Berger, S.D., and Culbertson, R.J.: Elemental mapping with elastically scattered electrons. J. Microsc. 144, 229249 (1986).
16. Schulz, T., Remmele, T., Markurt, T., Korytov, M., and Albrecht, M.: Analysis of statistical compositional alloy fluctuations in InGaN from aberration corrected transmission electron microscopy image series. J. Appl. Phys. 112, 033106 (2012).
17. Walther, T., Amari, H., Ross, I.M., Wang, T., and Cullis, A.G.: Lattice resolved annular dark-field scanning transmission electron microscopy of (Al, In)GaN/GaN layers for measuring segregation with sub-monolayer precision. J. Mater. Sci. 48, 28832892 (2013).
18. Pereira, S., Correia, M.R., Pereira, E., O’Donnell, K.P., Alves, E., Sequeira, A.D., and Franco, N.: Interpretation of double x-ray diffraction peaks from InGaN layers. Appl. Phys. Lett. 79, 1432 (2001).
19. Srinivasan, S., Liu, R., Bertram, F., Ponce, F.A., Tanaka, S., Omiya, H., and Nakagawa, Y.: A comparison of rutherford backscattering spectroscopy and x-ray diffraction to determine the composition of thick InGaN epilayers. Phys. Status Solidi B 228, 4144 (2001).
20. Wagner, J., Ramakrishnan, A., Behr, D., Maier, M., Herres, N., Kunzer, M., Obloh, H., and Bachem, K-H.: Composition dependence of the band gap energy of InxGal−xN layers on GaN (x≤0.15) grown by metal-organic chemical vapor deposition. MRS Internet J. Nitride Semicond. Res. 4S1, G2.8 (1999).
21. Pereira, S., Correia, M.R., Monteiro, T., Pereira, E., Alves, E., Sequeira, A.D., and Franco, N.: Compositional dependence of the strain-free optical band gap in InxGa1−xN layers. Appl. Phys. Lett. 78, 2137 (2001).
22. Pereira, S., Correia, M.R., Monteiro, T., Pereira, E., Soares, M.R., and Alves, E.: Indium content determination related with structural and optical properties of InGaN layers. J. Cryst. Growth 230, 448453 (2001).
23. O’Donnell, K.P., Mosselmans, J.F.W., Martin, R.W., Pereira, S., and White, M.E.: Structural analysis of InGaN epilayers. J. Phys.: Condens. Matter 13, 69776991 (2001).
24. Niermann, T., Park, J.B., and Lehmann, M.: Local estimation of lattice constants in HRTEM images. Ultramicroscopy 111, 10831092 (2011).
25. Pretorius, A., Müller, K., Yamaguchi, T., Kröger, R., Hommel, D., and Rosenauer, A.: Concentration evaluation in nanometre-sized InxGa1−xN Islands using transmission electron microscopy. Springer Proc. Phys. 120, 1720 (2008).
26. Hüe, F., Hÿtch, M.J., Hartmann, J-M., Bogumilowicz, Y., and Claverie, A.: Strain measurements in SiGe devices by aberration-corrected high resolution electron microscopy. Springer Proc. Phys. 120, 149152 (2008).
27. Jesson, D.E. and Pennycook, S.: Incoherent imaging of crystals using thermally scattered electrons. Proc. R. Soc. London, Ser. A 449, 273293 (1995).
28. Egerton, R.F., Li, P., and Malac, M.: Radiation damage in the TEM and SEM. Micron 35, 399409 (2004).
29. Smeeton, T.M., Kappers, M.J., Barnard, J.S., Vickers, M.E., and Humphreys, C.J.: Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope. Appl. Phys. Lett. 83, 5419 (2003).
30. Rosenauer, A., Mehrtens, T., Müller, K., Gries, K., Schowalter, M., Satyam, P.V., Bley, S., Tessarek, C., Hommel, D., Sebald, K., Seyfried, M., Gutowski, J., Avramescu, A., Engl, K., and Lutgen, S.: Composition mapping in InGaN by scanning transmission electron microscopy. Ultramicroscopy 111, 13161327 (2011).
31. Baloch, K.H., Johnston-Peck, A.C., Kisslinger, K., Stach, E.A., and Gradečak, S.: Revisiting the “In-clustering” question in InGaN through the use of aberration-corrected electron microscopy below the knock-on threshold. Appl. Phys. Lett. 102, 191910 (2013).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed