Skip to main content Accessibility help
×
Home

A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity

  • Shuichi Wada (a1), Mamoru Mabuchi (a2), Kenji Higashi (a3) and Terence G. Langdon (a1)

Abstract

Specimens of two Al–Cu–Mg (2124) composites, reinforced with 20 vol% of either Si3N4 particulates or Si3N4 whiskers, were tested under experimental conditions close to those for optimum high strain rate superplasticity. Both composites developed extensive internal cavitation during testing, but quantitative measurements show that significant cavity growth occurs throughout the test in the whisker-reinforced composite, but only at strains ≥1.0 in the particulate-reinforced composite. This difference in behavior is attributed to differences in the extent of a discontinuous liquid phase at the grain boundaries and at the matrix/reinforcement interfaces. It is concluded that the presence of an extensive liquid phase in the particulate-reinforced composite is beneficial for attaining high ductility because it relieves the stress concentrations from grain boundary sliding and thereby limits the growth of cavities.

Copyright

References

Hide All
1.Mohamed, F. A. and Langdon, T. G., Acta Metall. 29, 911 (1981).
2.Langdon, T. G., Metall. Trans. 13A, 689 (1982).
3.Nieh, T. G., Henshall, C. A., and Wadsworth, J., Scripta Metall. 18, 1405 (1984).
4.Nieh, T. G., Gilman, P. S., and Wadsworth, J., Scripta Metall. 19, 1375 (1985).
5.Higashi, K. and Mabuchi, M., in Advanced Composites '93, edited by Chandra, T. and Dhingra, A.K. (TMS, Warrendale, PA, 1993), p. 35.
6.Higashi, K., Mater. Sci. Eng. A 166, 109 (1993).
7.Mabuchi, M. and Higashi, K., Key Eng. Mater. 104–107, 225 (1995).
8.Langdon, T. G., Mater. Sci. Eng. A 174, 225 (1994).
9.Langdon, T. G., Acta Metall. Mater. 42, 2437 (1994).
10.Nieh, T. G., Wadsworth, J., and Imai, T., Scripta Metall. 26, 703 (1992).
11.Chokshi, A. H., Bieler, T. R., Nieh, T. G., Wadsworth, J., and Mukherjee, A. K., in Superplasticity in Aerospace, edited by Heikkenen, H. C. and McNelley, T.R. (TMS, Warrendale, PA, 1988), p. 229.
12.Imai, T., Mabuchi, M., Tozawa, Y., and Yamada, M., J. Mater. Sci. Lett. 9, 255 (1990).
13.Mabuchi, M., Higashi, K., and Langdon, T. G., Acta Metall. Mater. 42, 1739 (1994).
14.Mabuchi, M. and Higashi, K., Philos. Mag. Lett. 70, 1 (1994).
15.Koike, J., Mabuchi, M., and Higashi, K., Acta Metall. Mater. 43, 199 (1995).
16.Higashi, K. and Mabuchi, M., Mater. Sci. Eng. A 176, 461 (1994).
17.Iwasaki, H., Takeuchi, M., Mori, T., Mabuchi, M., and Higashi, K., Scripta Metall. Mater. 31, 255 (1994).
18.Mabuchi, M., Iwasaki, H., Higashi, K., and Langdon, T. G., Mater. Sci. Technol. 11, 1295 (1995).
19.Ma, Y., Zhao, X., and Langdon, T. G., in Creep and Fracture of Engineering Materials and Structures, edited by Wilshire, B. and Evans, R. W. (The Institute of Metals, London, England, 1990), p. 199.
20.Ma, Y. and Langdon, T. G., Acta Metall. Mater. 42, 2753 (1994).
21.Ma, Y. and Langdon, T. G., Metall. Mater. Trans. 27A, 873 (1996).
22.Ayensu, A. and Langdon, T. G., Metall. Mater. Trans. 27A, 901 (1996).
23.Zhao, X. and Langdon, T. G., in Superplasticity in Metals, Ceramics, and Intermetallics, edited by Mayo, M. J., Kobayashi, M., and Wadsworth, J. (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), p. 215.
24.Ma, Y., Zhao, X., and Langdon, T. G., in Microstructural Science, edited by Kanne, W. R., Johnson, G. W. E., Braun, J. D., and Louthan, M. R. (ASM INTERNATIONAL, Materials Park, OH, 1993), Vol. 20, p. 559.
25.Mabuchi, M. and Higashi, K., Mater. Trans. JIM 35, 399 (1994).
26.Mabuchi, M. and Higashi, K., J. Mater. Res. 10, 2494 (1995).
27.Koike, J., Mabuchi, M., and Higashi, K., J. Mater. Res. 10, 133 (1995).
28.Nieh, T. G. and Wadsworth, J., in Superplasticity in Advanced Materials, edited by Hori, S., Tokizane, M., and Furushiro, N. (The Japan Society for Research on Superplasticity, Osaka, Japan, 1991), p. 339.
29.Padmanabhan, K. A. and Davies, G. J., Superplasticity (SpringerVerlag, Berlin, 1980).
30.Langdon, T. G., Scripta Metall. 11, 997 (1977).
31.Langdon, T. G., Metal Sci. 16, 175 (1982).
32.Speight, M. V. and Beere, W., Metal Sci. 9, 190 (1975).
33.Chokshi, A. H. and Langdon, T. G., Acta Metall. 35, 1089 (1987).
34.Ma, Y. and Langdon, T. G., Scripta Metall. Mater. 26, 1239 (1992).
35.Hancock, J. W., Metal Sci. 10, 319 (1976).
36.Ghosh, A. K., in Deformation of Polycrystals: Mechanisms and Microstructures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, Denmark, 1981), p. 277.
37.Ma, Y., Zhou, M., Sørensen, O. T., and Langdon, T. G., in Super-plasticity and Superplastic Forming, edited by Ghosh, A. K. and Bieler, T. R. (TMS Warrendale, PA, 1995), p. 93.
38.Chokshi, A. H. and Langdon, T. G., Acta Metall. Mater. 38, 887 (1990).
39.Jones, H., Metal. Sci. J. 5, 15 (1971).
40.Mohamed, F. A. and Langdon, T. G., Metall. Trans. 5, 2339 (1974).

Related content

Powered by UNSILO

A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity

  • Shuichi Wada (a1), Mamoru Mabuchi (a2), Kenji Higashi (a3) and Terence G. Langdon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.