Skip to main content Accessibility help
×
Home

Pt–Pd catalytic nanoflowers: Synthesis, characterization, and the activity toward electrochemical oxygen reduction

  • Simon Tymen (a1), Andreas Undisz (a2), Markus Rettenmayr (a2) and Anna Ignaszak (a3)

Abstract

This work aims to synthesize PtPd catalytic clusters and to study the effect of the particle size, the curvature and possible alloying on the catalytic activity for oxygen reduction reaction, electrochemical stability, the mass-transfer of redox active species toward catalytic sites and the electro-kinetic of the oxygen reduction reaction (ORR) process. The curvature and the chemical composition of the catalyst surface significantly influence the electrochemically active surface area and catalytic activity toward oxygen reduction, regardless the particle size. The best catalytic activity was accomplished for 45 nm clusters due to possible alloying that enhance the O2 adsorption and dissociation. The complementary impedance studies demonstrated that 45 nm cluster has also the shortest effective diffusion length and the highest reaction rate constant among all morphologies, indicating on superior reactant transport to the catalytic sites. In addition, the 45 nm clusters showed improved electrochemical stability that is believed to be the combined effect of alloying and the compactness of the structure.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: anna.ignaszak@uni-jena.de

References

Hide All
1. Yoon, Y., Rousseau, R., Weber, R.S., Mei, D., and Lercher, J.A.: First-principles study of phenol hydrogenation on Pt and Ni catalysts in aqueous phase. J. Am. Chem. Soc. 136, 10287 (2014).
2. Sievers, G., Mueller, S., Quade, A., Steffen, F., Jakubith, S., Kruth, A., and Brueser, V.: Mesoporous Pt–Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. J. Power Sources 268, 255 (2014).
3. Yi, L., Liu, L., Wang, X., Liu, X., Yi, W., and Wang, X.: Carbon supported Pt–Sn nanoparticles as anode catalyst for direct borohydride–hydrogen peroxide fuel cell: Electrocatalysis and fuel cell performance. J. Power Sources 224, 6 (2013).
4. Basri, S., Kamarudin, S.K., Daud, W.R.W., Yaakob, Z., and Kadhum, A.A.H.: Novel anode catalyst for direct methanol fuel cells. Sci. World J. 2014, e547604 (2014).
5. Cheng, F. and Chen, J.: Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chem. Soc. Rev. 41, 2172 (2012).
6. Lee, J.Y., Kwak, D.H., Lee, Y.W., Lee, S., and Park, K.W.: Synthesis of cubic PtPd alloy nanoparticles as anode electrocatalysts for methanol and formic acid oxidation reactions. Phys. Chem. Chem. Phys. 17, 8642 (2015).
7. Rashid, M., Jun, T.S., Jung, Y., and Kim, Y.S.: Bimetallic core–shell Ag@Pt nanoparticle-decorated MWNT electrodes for amperometric H2 sensors and direct methanol fuel cells. Sens. Actuators, B 208, 7 (2015).
8. Chen, L., Kuai, L., and Geng, B.: Shell structure-enhanced electrocatalytic performance of Au–Pt core–shell catalyst. Cryst. Eng. Commun. 15, 2133 (2013).
9. Li, M., Guo, X., Pan, Y., Liang, Y., Wu, Y., Wen, Y., and Yang, H.: Pt/single-stranded DNA/graphene nanocomposite with Improved catalytic activity and CO tolerance. J. Mater. Chem. A 3, 10353 (2015).
10. Jia, Y., Su, J., Chen, Z., Tan, K., Chen, Q., Cao, Z., Jiang, Y., Xie, Z., and Zheng, L.: Composition-tunable synthesis of Pt–Cu octahedral alloy nanocrystals from PtCu to PtCu3 via underpotential-deposition-like process and their electro-catalytic properties. RSC Adv. 5, 18153 (2015).
11. Nesselberger, M., Ashton, S., Meier, J.C., Katsounaros, I., Mayrhofer, K.J.J., and Arenz, M.: The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 133, 17428 (2011).
12. Xiao, M., Li, S., Zhao, X., Zhu, J., Yin, M., Liu, C., and Xing, W.: Enhanced catalytic performance of composition-tunable PtCu nanowire networks for methanol electrooxidation. ChemCatChem 6, 2825 (2014).
13. Toge, A., Yokono, T., Saito, M., Daimon, H., Tasaka, A., and Inaba, M.: Oxygen reduction reaction activity of shape controlled Pt catalysts. ECS Trans. 41, 2283 (2011).
14. Bing, Y., Liu, H., Zhang, L., Ghosh, D., and Zhang, J.: Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem. Soc. Rev. 39, 2184 (2010).
15. Fang, B., Wanjala, B.N., Yin, J., Loukrakpam, R., Luo, J., Hu, X., Last, J., and Zhang, C-J.: Electrocatalytic performance of Pt-based trimetallic alloy nanoparticle catalysts in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 37, 4627 (2012).
16. Adams, R.D., Captain, B., Fu, W., Smith, J.L., and Smith, M.D.: Addition of platinum and palladium tri-tert-butyl phosphine groups to open Pt–Fe and Pt–Ru metal carbonyl clusters. Organometallics 23, 589 (2004).
17. Chen, Y., Liang, Z., Yang, F., Liu, Y., and Chen, S.: Ni–Pt core–shell nanoparticles as oxygen reduction electrocatalysts: Effect of Pt shell coverage. J. Phys. Chem. C 115, 24073 (2011).
18. Wang, G., Huang, B., Xiao, L., Ren, Z., Chen, H., Wang, D., Abruña, H.D., Lu, J., and Zhuang, L.: Pt skin on AuCu intermetallic substrate: A strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643 (2014).
19. Hodnik, N., Bele, M., and Hočevar, S.: New Pt-skin electrocatalysts for oxygen reduction and methanol oxidation reactions. Electrochem. Commun. 23, 125 (2012).
20. Bele, M., Jovanovič, P., Pavlišič, A., Jozinović, B., Zorko, M., Rečnik, A., Chernyshova, E., Hočevar, S., Hodnik, N., and Gaberšček, M.: A highly active Pt3Cu intermetallic core–shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol–gel synthesis. Chem. Commun. 50, 13124 (2014).
21. Li, W., Zhou, W., Li, H., Zhou, Z., Zhou, B., Sun, G., and Xin, Q.: Nano-structured Pt–Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta 49, 1045 (2004).
22. Toda, T., Igarashi, H., and Watanabe, M.: Enhancement of the electrocatalytic O2 reduction on Pt–Fe alloys. J. Electroanal. Chem. 460, 258 (1999).
23. Yang, H., Vogel, W., Lamy, C., and Alonso-Vante, N.: Structure and electrocatalytic activity of carbon-supported Pt–Ni alloy nanoparticles toward the oxygen reduction reaction. J. Phys. Chem. B 108, 11024 (2004).
24. Stamenkovic, V.R., Fowler, B., Mun, B.S., Wang, G., Ross, P.N., Lucas, C.A., and Marković, N.M.: Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).
25. Johns, T.R., Gaudet, J.R., Peterson, E.J., Miller, J.T., Stach, E.A., Kim, C.H., Balogh, M.P., and Datye, A.K.: Microstructure of bimetallic Pt–Pd catalysts under oxidizing conditions. ChemCatChem 5, 2636 (2013).
26. Lamy, C.: Electrocatalytic oxidation of organic compounds on noble metals in aqueous solution. Electrochim. Acta 29, 1581 (1984).
27. Yang, J., Lee, J.Y., Zhang, Q., Zhou, W., and Liu, Z.: Carbon-supported pseudo-core-shell Pd–Pt nanoparticles for ORR with and without methanol. J. Electrochem. Soc. 155, B776 (2008).
28. Zhou, Z.M., Shao, Z.G., Qin, X.P., Chen, X.G., Wei, Z.D., and Yi, B-L.: Durability study of Pt–Pd/C as PEMFC cathode catalyst. Int. J. Hydrogen Energy 35, 1719 (2010).
29. Li, H., Sun, G., Li, N., Sun, S., Su, D., and Xin, Q.: Design and preparation of highly active Pt–Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. C 111, 5605 (2007).
30. Mayrhofer, K.J.J., Blizanac, B.B., Arenz, M., Stamenkovic, V.R., Ross, P.N., and Markovic, N.M.: The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433 (2005).
31. Chan, K-Y., Ding, J., Ren, J., Cheng, S., and Tsang, K.Y.: Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14, 505 (2004).
32. Eriksson, S., Nylén, U., Rojas, S., and Boutonnet, M.: Preparation of catalysts from microemulsions and their applications in heterogeneous catalysis. Appl. Catal., A 265, 207 (2004).
33. Santiago, E.I., Varanda, L.C., and Villullas, H.M.: Carbon-supported Pt–Co catalysts prepared by a modified polyol process as cathodes for PEM fuel cells. J. Phys. Chem. C 111, 3146 (2007).
34. Liu, Z., Yu, C., Rusakova, I.A., Huang, D., and Strasser, P.: Synthesis of Pt3Co alloy nanocatalyst via reverse micelle for oxygen reduction reaction in PEMFCs. Top. Catal. 49, 241 (2008).
35. Golikand, A.N., Asgari, M., and Lohrasbi, E.: Study of oxygen reduction reaction kinetics on multi-walled carbon nano-tubes supported Pt–Pd catalysts under various conditions. Int. J. Hydrogen Energy 36, 13317 (2011).
36. Beard, K.D., Van Zee, J.W., and Monnier, J.R.: Preparation of carbon-supported Pt–Pd electrocatalysts with improved physical properties using electroless deposition methods. Appl. Catal., B 88, 185 (2009).
37. Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., and Xia, Y.: Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302 (2009).
38. Peng, Z. and Yang, H.: Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 131, 7542 (2009).
39. Zhang, J., Lima, F.H.B., Shao, M.H., Sasaki, K., Wang, J.X., Hanson, J., and Adzic, R.R.: Platinum monolayer on nonnoble core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109, 22701 (2005).
40. Sasaki, K., Wang, J.X., Naohara, H., Marinkovic, N., More, K., Inada, H., and Adzic, R.R.: Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim. Acta 55, 2645 (2010).
41. He, C., Desai, S., Brown, G., and Bollepalli, S.: PEM fuel cell catalysts: Cost, performance, and durability. Electrochem. Soc. Interface 14, 41 (2005).
42. Sheng, W., Chen, S., Vescovo, E., and Shao-Horn, Y.: Size influence on the oxygen reduction reaction activity and instability of supported Pt nanoparticles. J. Electrochem. Soc. 159, B96 (2011).
43. Chen, S., Gasteiger, H.A., Hayakawa, K., Tada, T., and Shao-Horn, Y.: Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 157, A82 (2010).
44. Choe, J., Kim, D., Shim, J., Lee, I., and Tak, Y.: Fabrication of a nanosize-Pt-embedded membrane electrode assembly to enhance the utilization of Pt in proton exchange membrane fuel cells. J. Nanosci. Nanotechnol. 11, 7141 (2011).
45. Vukmirovic, M.B., Bliznakov, S.T., Sasaki, K., Wang, J.X., and Adzic, R.R.: Electrodeposition of metals in catalyst synthesis: The case of platinum monolayer electrocatalysts. Electrochem. Soc. Interface 20, 33 (2011).
46. Huang, X., Li, Y., Li, Y., Zhou, H., Duan, X., and Huang, Y.: Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett. 12, 4265 (2012).
47. Zhang, H., Jin, M., Wang, J., Li, W., Camargo, P.H.C., Kim, M.J., Yang, D., Xie, Z., and Xia, Y.: Synthesis of Pd–Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 133, 6078 (2011).
48. Fu, G., Wu, K., Lin, J., Tang, Y., Chen, Y., Zhou, Y., and Lu, T.: One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J. Phys. Chem. C 117, 9826 (2013).
49. Doña Rodríguez, J.M., Herrera Melián, J.A., and Pérez Peña, J.: Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. J. Chem. Educ. 77, 1195 (2000).
50. Ignaszak, A., Song, C., Zhu, W., Zhang, J., Bauer, A., Baker, R., Neburchilov, V., Ye, S., and Campbell, S.: Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. Electrochim. Acta 69, 397 (2012).
51. Vengrenovich, R.D., Ivanskii, B.V., Panko, I.I., Yarema, S.V., Kryvetskyi, V.I., and Stasyk, M.O.: Ostwald ripening of the platinum nanoparticles in the framework of the modified LSW theory. J. Nanomater. 2014, 821584 (2014).
52. Ahluwalia, R.K., Arisetty, S., Peng, J-K., Subbaraman, R., Wang, X., Kariuki, N., Myers, D.J., Mukundan, R., Borup, R., and Polevaya, O.: Dynamics of particle growth and electrochemical surface area loss due to platinum dissolution. J. Electrochem. Soc. 161, F291 (2014).
53. Ye, X., Yang, Q., Wang, Y., and Li, N.: Electrochemical behavior of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. Talanta 47, 1099 (1998).
54. Li, D., Wang, C., Strmcnik, D.S., Tripkovic, D.V., Sun, X., Kang, Y., Chi, M., Snyder, J.D., van der Vliet, D., Tsai, Y., Stamenkovic, V.R., Sun, S., and Markovic, N.M.: Functional links between Pt single crystal morphology and nanoparticles with different size and shape: The oxygen reduction reaction case. Energy Environ. Sci. 7, 4061 (2014).
55. Escaño, M.C.S. and Kasai, H.: First-principles study on surface structure, thickness and composition dependence of the stability of Pt-skin/Pt3Co oxygen-reduction-reaction catalysts. J. Power Sources 247, 562 (2014).
56. Song, C. and Zhang, J.: Electrocatalytic Oxygen Reduction Reaction in PEM Fuel Cell Electrocatalysts and Catalyst Layers, Zhang, J. ed.; Springer: London, 2008; p. 89.
57. Li, J., Wang, G., Wang, J., Miao, S., Wei, M., Yang, F., Yu, L., and Bao, X.: Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 7, 1519 (2014).
58. Otomo, J., Li, X., Kobayashi, T., Wen, C., Nagamoto, H., and Takahashi, H.: AC-impedance spectroscopy of anodic reactions with adsorbed intermediates: Electro-oxidations of 2-propanol and methanol on carbon-supported Pt catalyst. J. Electroanal. Chem. 573, 99 (2004).
59. Gabrielli, C., Keddam, M., Portail, N., Rousseau, P., Takenouti, H., and Vivier, V.: Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies. J. Phys. Chem. B 110, 20478 (2006).
60. Shao-Horn, Y., Sheng, W.C., Chen, S., Ferreira, P.J., Holby, E.F., and Morgan, D.: Instability of supported platinum nanoparticles in low-temperature fuel cells. Top. Catal. 46, 285 (2007).
61. Darling, R.M. and Meyers, J.P.: Mathematical model of platinum movement in PEM fuel cells. J. Electrochem. Soc. 152, A242 (2005).
62. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T.: Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal., B 56, 9 (2005).
63. Shao, M., Liu, P., Zhang, J., and Adzic, R.: Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction. J. Phys. Chem. B 111, 6772 (2007).
64. Holby, E.F., Sheng, W., Shao-Horn, Y., and Morgan, D.: Pt nanoparticle stability in PEM fuel cells: Influence of particle size distribution and crossover hydrogen. Energy Environ. Sci. 2, 865 (2009).

Keywords

Type Description Title
WORD
Supplementary materials

Tymen et al. supplementary material
Supplementary figures and tables

 Word (2.1 MB)
2.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed