Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T07:27:07.108Z Has data issue: false hasContentIssue false

Protons and deuterons in stoichiometric and nonstoichiometric MgAl2O4

Published online by Cambridge University Press:  31 January 2011

R. González
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Y. Chen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
J. F. Barhorst
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
K. L. Tsang
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Get access

Abstract

The OH and OD vibrational frequencies in stoichiometric and nonstoichiometric MgAl2O4 were measured. The nonstoichiometric material had a Al/Mg ratio of 7. The diffusion coefficient of deuterons in the nonstoichiometric material at 1600 K is about 6 ± 3 ⊠ 10−8 cm2/s. Deuterons can readily be swept out by applying an electric field at temperatures above 1000 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Crank, J., The Mathematics of Diffusion (Clarendon, Oxford, 1956).Google Scholar
2Gonzalez, R., Chen, Y., and Tsang, K. L., Phys. Rev. B 26, 4637 (1982).CrossRefGoogle Scholar
3Johnson, O. W., DeFord, J. W., and Shaner, J. W., J. Appl. Phys. 44, 3008 (1973).CrossRefGoogle Scholar
4Engstrom, H., Bates, J. B., Wang, J. C., and Abraham, M. M., Phys. Rev. B 21, 1520 (1980).CrossRefGoogle Scholar
5Engstrom, H., Bates, J. B., and Boatner, L. A., J. Chem. Phys. 73, 1073 (1980).CrossRefGoogle Scholar
6Gonzalez, R., Abraham, M. M., Boatner, L. A., and Chen, Y., J. Chem. Phys. 78, 660 (1983).CrossRefGoogle Scholar
7Gonzalez, R. and Chen, Y. (to be published).Google Scholar
8Stringer, J., in Defects and Transport in Oxides, edited by Seltzer, M. S. and JafTee, R. I. (Plenum, New York, 1974), p. 495.CrossRefGoogle Scholar
9Sonder, E. and Darken, L. S., Mater. Res. Soc. Symp. Proc. 24, 215 (1984).CrossRefGoogle Scholar
10Young, F. W. Jr., Baldwin, T., Merlini, A., and Sherrill, T., Advances in X-ray Analysis, edited by Mallett, G. R., Tray, M. J., and Mueller, W. M. (Plenum, New York, 1966), Vol. 9, p. 1.Google Scholar
11White, G. S., Lee, K. H., and Crawford, J. H. Jr., Phys. Status Solidi A42, 137 (1977).CrossRefGoogle Scholar
12Summers, G. P., White, G. S., Lee, K. H., and Crawford, J. H. Jr., Phys. Rev. B 21, 2578 (1980).CrossRefGoogle Scholar
13Chen, Y., Gonzalez, R., and Tsang, K. L., Phys. Rev. Lett. 53, 1077 (1984).CrossRefGoogle Scholar
14Gonzalez, R., Chen, Y., Tsang, K. L., and Summers, G. P., Appl. Phys. Lett. 41, 739 (1982).CrossRefGoogle Scholar
15Gonzalez, R., Chen, Y., and Tsang, K. L., J. Am. Cefam. Soc. 67, 775 (1984).CrossRefGoogle Scholar