Skip to main content Accessibility help

Properties of laser fabricated nanostructured Cu/diamond-like carbon composite

  • Y.M. Foong (a1), A.T.T. Koh (a1), S.R. Lim (a1), D.H.C. Chua (a1) and H.Y. Ng (a2)...


Copper/diamond-like carbon (DLC) was fabricated using pulsed laser deposition, and the effects of copper on the properties of DLC composites were studied. Experimental results showed that the presence of copper promoted surface evolution through the formation of nanoclusters, accentuated the formation of Si–C but graphitized the diamond bondings of DLC matrix. By considering the interaction of laser with copper/carbon composite target, the presence of copper may have increased the energy absorbed during laser deposition, as envisaged by Saha’s equation. Thus, upon the impingement of ions on substrate during deposition, the carbon and silicon atoms may have been redistributed to form Si–C bonding while the excess energy was released as heat to promote the formation of nanoclusters but graphitize the sp3 bonding in DLC. Although sp3 bonding was reduced with the presence of copper, mechanical characterization showed that the adhesion strength of the composite films was approximately five times higher compared to undoped DLC, as a result of the decrease in internal stress and the formation of Si–C bondings in DLC.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129 (2002).
2.Kim, S.H., Asay, D.B., and Dugger, M.T.: Nanotribology and MEMS. Nano Today 2, 22 (2007).
3.Bhushan, B. and Dandavate, C.: Thin-film friction and adhesion studies using atomic force microscopy. J. Appl. Phys. 87, 1201 (2000).
4.Sheeja, D., Tay, B.K., Yu, L., and Lau, S.P.: Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications. Surf. Coat. Technol. 154, 289 (2002).
5.Gabriel, K.J., Behi, F., and Mahadevan, R.: In situ friction and wear measurements in integrated polysilicon mechanisms. Sens. Actuators, A 21, 184 (1990).
6.Mehregany, M., Gabriel, K.J., and Trimmer, W.S.N.: Integrated fabrication of polysilicon mechanisms. IEEE Trans. Electron. Dev. 35, 719 (1988).
7.Tavrow, L.S., Bart, S.F., and Lang, J.H.: Operational characteristics of microfabricated electric motors. Sens. Actuators, A 35, 33 (1992).
8.Chen, L.Y. and Hong, F.C.N.: Diamond-like carbon nanocomposite films. Appl. Phys. Lett. 82, 3526 (2003).
9.Mckenzie, D.R., Muller, D., and Pailthorpe, B.A.: Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon. Phys. Rev. Lett. 67, 773 (1991).
10.Ban, M., Hasegawa, T., Fujii, S., and Fujioka, J.: Stress and structural properties of diamond-like carbon films deposited by electron beam excited plasma CVD. Diamond Relat. Mater. 12, 47 (2003).
11.Foong, Y.M., Hsieh, J., Li, X., and Chua, D.H.C.: The study on the effect of erbium on diamond-like carbon deposited by pulsed laser deposition technique. J. Appl. Phys. 106, 064904 (2009).
12.Dimigen, H. and Kiages, C-P.: Microstructure and wear behavior of metal-containing diamond-like coatings. Surf. Coat. Technol. 49, 543 (1991).
13.Wei, Q., Sharma, A.K., Sankar, J., and Narayan, J.: Mechanical properties of diamond-like carbon composite thin films prepared by pulsed laser deposition. Composites Part B 30, 675 (1999).
14.Marciano, F.R., Bonetti, L.F., Pessoa, R.S., Marcuzzo, J.S., Massi, M., Santos, L.V., and Trava-Airoldi, V.J.: The improvement of DLC film lifetime using silver nanoparticles for use on space devices. Diamond Relat. Mater. 17, 1674 (2008).
15.Lide, D.R.: CRC Handbook of Chemistry and Physics, 89th ed. (CRC, Boca Raton, FL, 2008).
16.Wei, Q., Narayan, R.J., Narayan, J., Sankar, J., and Sharma, A.K.: Improvement of wear resistance of pulsed laser deposited diamond-like carbon films through incorporation of metals. Mater. Sci. Eng., B 53, 262 (1998).
17.Musil, J., Louda, M., Soukup, Z., and Kubásek, M.: Relationship between mechanical properties and coefficient of friction of sputtered a-C/Cu composite thin films. Diamond Relat. Mater. 17, 1905 (2008).
18.Chen, C.C. and Hong, F.C.N.: Structure and properties of diamond-like carbon nanocomposite films containing copper nanoparticles. Appl. Surf. Sci. 242, 256 (2005).
19.Corbella, C., Bertran, E., Polo, M.C., Pascual, E., and Andújar, J.L.: Structural effects of nanocomposite films of amorphous carbon and metal deposited by pulsed-DC reactive magnetron sputtering. Diamond Relat. Mater. 16, 1828 (2007).
20.Zhao, X., He, X., Sun, Y., Yi, J., and Xiao, P.: Superhard and tougher SiC/diamond-like-carbon composite films produced by electron beam physical vapour deposition. Acta Mater. 57, 893 (2009).
21.Jiang, W., Wang, H., Kim, I., Bae, I-T., Li, G., Nachimuthu, P., Zhu, Z., Zhang, Y., and Weber, W.J.: Response of nanocrystalline 3 C silicon carbide to heavy-ion irradiation. Phys. Rev. B 80, 161301R (2009).
22.Tay, B.K., Xu, S., Tan, H.S., Yang, H.S., and Sun, Z.: Raman studies of tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc. Surf. Coat. Technol. 105, 155 (1998).
23.Matsuyama, N., Yukimura, K., and Maruyama, T.: Amorphous diamond-like carbon film prepared by pulsed laser deposition with application of pulsed negative bias voltage. J. Appl. Phys. 89, 1938 (2001).
24.Lucchese, M.M., Stavale, F., Martins Ferreira, E.H., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).
25.Ferrari, A.C. and Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).
26.Ji, L., Li, H., Zhao, F., Chen, J., and Zhou, H.: Microstructure and mechanical properties of Mo/DLC nanocomposite films. Diamond Relat. Mater. 17, 1949 (2008).
27.Tamor, M.A. and Vassell, W.C.: Raman “fingerprinting” of amorphous carbon films. J. Appl. Phys. 76, 3823 (1994).
28.Sheeja, D., Tay, B.K., Lau, S.P., and Xu, S.: Tribological properties and adhesive strength of DLC coatings prepared under different substrate bias voltages. Wear 249, 433 (2001).
29.Xu, S., Tay, B.K., Tan, H.S., Zhong, L., Tu, Y.Q., Silva, S.R.P., and Milne, W.I.: Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy. J. Appl. Phys. 79, 7234 (1996).
30.Chastain, J.: Handbook of X-Ray Photoelectron Spectroscopy (Perkin Elmer Corporation, Eden Prairie, MN, 1992).
31.Kim, D., Jang, H.S., Kim, Y.S., Choi, D.H., Choi, B.K., Lee, J.H., You, Y.Z., and Chun, H.G.: Growth and characteristics of diamond-like carbon (DLC) films deposited by direct negative carbon ion beam deposition. Nucl. Instrum. Methods Phys. Res., Sect. B 254, 93 (2007).
32.Jouan, P-Y., Peignon, M-C., Cardinaud, Ch., and Lempérière, G.: Characterisation of TiN coatings and of the TiN/Si interface by X-ray photoelectron spectroscopy and Auger electron spectroscopy. Appl. Surf. Sci. 68, 595 (1993).
33.Ouerghi, A., Kahouli, A., Lucot, D., Portail, M., Travers, L., Gierak, J., Penuelas, J., Jegou, P., Shukla, A., Chassagne, T., and Zielinski, M.: Epitaxial graphene on cubic SiC(111)/Si(111) substrate. Appl. Phys. Lett. 96, 191910 (2010).
34.Watts, J.F. and Wolstenholme, J.: An Introduction to Surface Analysis by XPS and AES (John Wiley & Sons Ltd, West Sussex, England, 2003).
35.Downs, R.T., Bartelmehs, K.L., Gibbs, G.V., and Boisen, M.B. Jr.: Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am. Mineral. 78, 1104 (1993).
36.Singh, R.K. and Narayan, J.: Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Phys. Rev. B 41, 8843 (1990).
37.Willmott, P.R. and Huber, J.R.: Pulsed laser vaporization and deposition. Rev. Mod. Phys. 72, 315 (2000).
38.Chen, F.F.: Plasma Diagnostic Techniques, edited by Huddlestone, R. H. and Leonard, S. L. (Academic, London), p. 1.
39.Anisimov, S.I., Bityurin, N.M., and Luk’yanchuk, B.S.: Photo-Excited Processes, Diagnostics and Applications (PEPDA), edited by Peled, A. (Kluwer Academic, Dordrecht, The Netherlands, 2003), p. 121159.
40.Cuomo, J.J., Pappas, D.L., Bruely, J., Doyle, J.P., and Saenger, K.L.: Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond. J. Appl. Phys. 70, 1706 (1991).
41.Lossy, R., Pappas, D.L., Roy, R.A., Doyle, J.P., Cuomo, J.J., and Bruley, J.: Properties of amorphous diamond films prepared by a filtered cathodic arc. J. Appl. Phys. 77, 4750 (1995).
42.Lifshitz, Y., Edrei, R., Hoffman, A., Grossman, E., Lempert, G.D., Berthold, J., Schultrich, B., and Jäger, H.U.: Surface roughness evolution and growth mechanism of carbon films from hyperthermal species. Diamond Relat. Mater. 16, 1771 (2007).
43.Porter, D.A. and Easterling, K.E.: Phase Transformation in Metals and Alloys, 2nd Edition (CRC Press, Cheltenham, England, 1992).
44.Egelhoff, W.F. Jr. and Tibbetts, G.G.: Growth of copper, nickel, and palladium films on graphite and-amorphous carbon. Phys. Rev. B 19, 5028 (1979).
45.Hamilton, J.F. and Logel, P.C.: Catalysis of electroless nickel deposition by small palladium nuclei. J. Catal. 39, 253 (1973).
46.Zhou, W., Han, Z., Wang, J., Zhang, Y., Jin, Z., Sun, X., Zhang, Y., Yan, C., and Li, Y.: Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6, 2987 (2006).
47.Rasool, H.I., Song, E.B., Allen, M.J., Wassei, J.K., Kaner, R.B., Wang, K.L., Weiller, B.H., and Gimzewski, J.K.: Continuity of graphene on polycrystalline copper. Nano Lett. 11, 251 (2011).
48.Cheung, C.L., Kurtz, A., Park, H., and Lieber, C.M.: Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429 (2002).
49.Matenoglou, G., Evangelakis, G.A., Kosmidis, C., Foulias, S., Papadimitriou, D., and Patsalas, P.: Pulsed laser deposition of amorphous carbon/silver nanocomposites. Appl. Surf. Sci. 253, 8155 (2007).
50.Andara, M., Agarwal, A., Scholvin, D., Gerhardt, R.A., Doraiswamy, A., Jin, C., Narayan, R.J., Shih, C.C., Shih, C.M., Lin, S.J., and Su, Y-Y.: Hemocompatibility of diamondlike carbon–metal composite thin films. Diamond Relat. Mater. 15, 1941 (2006).
51.Narayan, R.J.: Laser processing of diamond-like carbon–metal composites. Appl. Surf. Sci. 245, 420 (2005).
52.Wong, H., Foong, Y.M., and Chua, D.H.C.: Improving the conductivity of diamond-like carbon films with zinc doping and its material properties. Appl. Surf. Sci. 257, 9616 (2011).
53.Wei, Q., Sankar, J., Sharma, A.K., Oktyabsky, S., Narayan, J., and Narayan, R.J.: Atomic structure, electrical properties, and infrared range optical properties of diamondlike-carbon films containing foreign atoms prepared by pulsed laser deposition. J. Mater. Res. 15, 633 (2000).
54.Koh, A.T.T., Hsieh, J., and Chua, D.H.C.: Structural characterization of dual-metal containing diamond-like carbon nanocomposite films by pulsed laser deposition. Diamond Relat. Mater. 19, 637 (2010).
55.Lifshitz, Y., Kasi, S.R., and Rabalais, J.W.: Subplantation model for film growth from hyperthermal species: Application to diamond. Phys. Rev. Lett. 62, 1290 (1989).
56.Lifshitz, Y., Lempert, G.D., and Grossman, E.: Substantiation of subplantation model for diamondlike film growth by atomic force microscopy. Phys. Rev. Lett. 72, 2753 (1994).
57.Grill, A.: Electrical and optical properties of diamond-like carbon. Thin Solid Films 355, 189 (1999).
58.Weng, K.W., Chen, Y.C., Lin, T.N., and Wang, D.Y.: Metal-doped diamond-like carbon films synthesized by filter-arc deposition. Thin Solid Films 515, 1053 (2006).
59.Ahmad, I., Roy, S.S., Rahman, M.A., Okpalugo, T.I.T., Maguire, P.D., and McLaughlin, J.A.: Substrate effects on the microstructure of hydrogenated amorphous carbon films. Curr. Appl. Phys. 9, 937 (2009).
60.Sheeja, D., Tay, B.K., Lau, S.P., Shi, X., Shi, J., Li, Y., Ding, X., Liu, E., and Sun, Z.: Characterization of ta-C films prepared by a two-step filtered vacuum arc deposition technique. Surf. Coat. Technol. 127, 246 (2000).


Related content

Powered by UNSILO

Properties of laser fabricated nanostructured Cu/diamond-like carbon composite

  • Y.M. Foong (a1), A.T.T. Koh (a1), S.R. Lim (a1), D.H.C. Chua (a1) and H.Y. Ng (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.