Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T01:03:40.527Z Has data issue: false hasContentIssue false

Properties of Bi2Sr2CaCu2O8 thick films melt-processed at temperatures up to 950 °C

Published online by Cambridge University Press:  31 January 2011

W.C. McGinnis
Affiliation:
Naval Ocean Systems Center, Code 573, San Diego, California 92152-5000
J.S. Briggs
Affiliation:
Naval Ocean Systems Center, Code 573, San Diego, California 92152-5000
Get access

Abstract

Thick Bi2Sr2CaCu2O8 films have been produced by melting Bi2Sr2CaCu2O8 powder on MgO substrates at temperatures just above the melting temperature of the powder. X-ray diffraction measurements indicate enhanced c-axis alignment throughout the thickness of the films. Films melted at 900 °C show greater alignment and contain less Bi2Sr2CuO6 compared to those processed at 950 °C. Both the degree of alignment and the Bi2Sr2CuO6 content increase as the cooling rate is decreased. Transport measurements show that films quickly cooled from low melt-processing temperatures have the highest critical current densities (Jc = 13 kA/cm2 at 30 K). The temperature dependence of Jc is best described by a flux creep model. Finally, Jc at 4.2 K (in both parallel and perpendicular magnetic fields) undergoes a sudden drop at low fields, but levels off above 0.5 T to about 30% of the zero field value.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).Google Scholar
2.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2352 (1989).CrossRefGoogle Scholar
3.Neumüller, H. W. and Ries, G, Physica C 162–164, 363 (1989).Google Scholar
4.Peuckert, M., Becker, W., Bock, J., Hettich, B., Neumüller, H.-W., and Schwarz, M., Physica C 162–164, 893 (1989).CrossRefGoogle Scholar
5.Zhu, W., Miller, M.M., Metcalf, P. A., Calhoun, C.S., and Sato, H., Mater. Lett. 7, 247 (1988).CrossRefGoogle Scholar
6.Spann, J.R., Toth, L.E., Lloyd, I.K., Kahn, M., Chase, M., Das, B.N., Francavilla, T.L., and Osofsky, M. S., J. Mater. Res. 5, 1163 (1990).Google Scholar
7.Huang, J., Li, T., Xie, X., Zhang, J., Chen, T., and Wu, T., Mater. Lett. 6, 222 (1988).Google Scholar
8.Farrell, D. E., Chandrasekhar, B. S., DeGuire, M. R., Fang, M. M., Kogan, V. G., Clem, J. R., and Finnemore, D. K., Phys. Rev. B 36, 4025 (1987).Google Scholar
9.Tarascon, J. M., McKinnon, W. R., Barboux, P., Hwang, D. M., Bagley, B. G., Greene, L. H., Hull, G. W., LePage, Y., Stoffel, N., and Giroud, M., Phys. Rev. B 38, 8885 (1988).Google Scholar
10.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
11.Umezawa, A., Crabtree, G. W., Liu, J. Z., Weber, H.W, Kwok, W.K, Nunez, L.H, Moran, T.J, Sowers, C.H, and Claus, H, Phys. Rev. B 36, 7151 (1987).Google Scholar
12.McGinnis, W. C., Jacobs, E. W., Rees, C. D., and Jones, T. E., Rev. Sci. Instrum. 61, 984 (1990).CrossRefGoogle Scholar
13.Onoda, M., Yamamoto, A., Takayama-Muromachi, E., and Takekawa, S., Jpn. J. Appl. Phys. 27, L833 (1988).CrossRefGoogle Scholar
14.Calestani, G., Rizzoli, C., Francesconi, M. G, and Andreetti, G. D., Physica C 161, 598 (1989).CrossRefGoogle Scholar
15.Tallon, J. L., Buckley, R. G., Gilberd, P. W., and Presland, M. R., Physica C 158, 247 (1989).CrossRefGoogle Scholar
16.Knauf, N., Harnischmacher, J., Müller, R., Borowski, R., Roden, B., and Wohlleben, D., Physica C 173, 414 (1991).Google Scholar
17.Savvides, N., Physica C 165, 371 (1990).Google Scholar
18.Kwak, J. F., Venturini, E. L., and Ginley, D. S., Physica B 148, 426 (1987).CrossRefGoogle Scholar
19.Peterson, R. L. and Ekin, J. W., Phys. Rev. B 37, 9848 (1988).Google Scholar
20.Dew-Hughes, D., Cryogenics 28, 674 (1988).Google Scholar
21.Ekin, J. W., Hart, H. R., Jr., and Gaddipati, A. R., J. Appl. Phys. 68, 2285 (1990).Google Scholar
22.Wang, F. R., Wen, Q. Z., Li, C. Y., Dai, Y. D., Yin, D. L., and Zhou, M. L., Modern Phys. Lett. B 2, 613 (1988).CrossRefGoogle Scholar
23.Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W. II, Zaluzec, N. J., Flandermeyer, B., de Lima, O. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987).Google Scholar
24.Likharev, K. K., Rev. Modern Phys. 51, 101 (1979).Google Scholar
25.Martin, S., Fiory, A. T., Fleming, R. M., Espinosa, G. P., and Cooper, A. S., Appl. Phys. Lett. 54, 72 (1989).Google Scholar
26.Hampshire, D. P., Cai, X., Seuntjens, J., and Larbalestier, D. C., Supercond. Sci. Technol. 1, 12 (1988)Google Scholar