Skip to main content Accessibility help
×
Home

Promoting secondary nucleation using methane modulations during diamond chemical vapor deposition to produce smoother, harder, and better quality films

  • N. Ali (a1), V.F. Neto (a1) and J. Gracio (a1)

Abstract

In this paper, we present results obtained from a comparison study relating to the deposition of diamond films using two processes, namely, time-modulated chemical vapor deposition (TMCVD) and conventional CVD. Polycrystalline diamond films were deposited onto silicon substrates using both hot-filament CVD and microwave plasma CVD systems. The key feature of TMCVD is that it modulates methane (CH4) flow during diamond CVD, whereas in conventional CVD the CH4 flow is kept constant throughout the deposition process. Films grown using TMCVD were smoother, harder, and displayed better quality than similar films grown using constant CH4 flow during CVD. The advantage of using TMCVD is that it promotes secondary nucleation to occur on existing diamond crystals. Pulsing CH4, consecutively, at high and low concentrations allows the depositing film to maintain its quality in terms of diamond-carbon phase. Films grown under constant CH4 flow during diamond CVD displayed a columnar growth mode, whereas with the time modulated films the growth mode was different. The mechanism of film growth during TMCVD is presented in this paper. The growth rate of films obtained using the hot filament CVD system with constant CH4 flow was higher than the growth rate of time modulated films. However, using the microwave-plasma CVD system, the effect was the contrary and the time-modulated films were grown at a higher rate. The growth rate results are discussed in terms of substrate temperature changes during TMCVD.

Copyright

References

Hide All
May, P.W., Philos. Trans. R. Soc. London A 358, 473 (2000).
Ashfold, M.N., May, P.W., Rego, C.A., and Everitt, N.M., Chemical Society Reviews (1994), p. 23.
Ali, N., Ahmed, W., Hassan, I.U., and Rego, C.A., Surf. Eng. 14, 292 (1998).
Chen, H., Nielsen, M.L., Gold, C.J., Dillon, R.O., DiGregorio, J., and Furtak, T., Thin Solid Films 212, 169 (1992).
Huang, J.T., Yeh, W.Y., Hwang, J., and Chang, H., Thin Solid Films 315, 35 (1998).
Lee, D.G. and Singh, R.K., in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by Luzzi, D.E., Heinz, T.F., Iwaki, M., and Jacobson, D.C. (Mater. Res. Soc. Symp. Proc. 354, Pittsburgh, PA, 1995), p. 699.
Fan, Q.H., Pereira, E., Davim, P., Gracio, J., and Tavares, C.J., Surf. Coat. Technol. 126, 111 (2000).
Maeda, H., Ohtsubo, K., Irie, M., Ohya, N., Kusakabe, K., and Morooka, S., J. Mater. Res. 10, 3115 (1995).
Locher, R., Wild, C., Herres, N., Behr, D., and Koidl, P., Appl. Phys. Lett. 65, 34 (1994).
Malshe, A.P., Park, B.S., Brown, W.D., and Naseem, H.A., Diamond Rel. Mater. 8, 1198 (1999).
Wolter, S.D., Okuzumi, F., Prater, J.T., and Siter, Z., Phys. Status Solidi 186, 331 (2001).
Beake, B.D., Hassan, I.U., Rego, C.A., and Ahmed, W., Diamond Relat. Mater. 9, 1421 (2000).
Zhou, D., Stevie, F.A., and Chow, L., J. Vac. Sci. Technol., A 17, 1139 (2001).
Chen, Q., Gruen, D.M., Krauss, A.R., Corrigan, T.D., Witck, M., Swain, G.M., J. Electrochem. Soc. 148, L4 (2001).
Sharda, T., Umeno, M., Soga, T. et al., Appl. Phys. Lett. 77, 4304 (2001).
Gu, C., Jiang, X., and Jin, Z., J. Vac. Sci. Technol. 19, 962 (2001).
Chen, L.C., Kichambare, P.D., and Chen, K.H., J. Appl. Phys. 89, 753 (2001).
Ye, H., Sun, C.Q., and Huang, H., Appl. Phys. Lett. 78, 1826 (2001).
Park, K.H., Choi, S., Lee, K.M., Oh, S., Lee, S., Koh, K.H., J. Korean Phys. Soc. 37, L153 (2000).
Kru¨ger, J.K., Embs, J.P., and Lukas, S., et al., J. Appl. Phys. 87, 74 (2000).
Sharda, T., Soga, T., Jimbo, T., and Umeno, M., Diamond Relat. Mater. 9, 1333 (2000).
Zhou, D., McCauley, T.G., Gruen, D.M., J. Appl. Phys. 83, 540 (1998).
Milewski, P.D., J. Soc. Inf. Disp. 6, 143 (1998).
Yagi, H., Ide, T., and Mori, Y., J. Mater. Res. 13, 1724 (1998).
McCauley, T.G., Noguchi, T., and Miyasaka, Y., Appl. Phys. Lett. 73, 1646 (1998).
Peng, J., Hong, P., and Szabo, D.V., J. Mater. Sci. Technol. 14, 173 (1998).
Brenner, J.R., Harkness, J.B.L., and Marshall, C.L., Nanostruct. Mater. 8, 1 (1997).
Lee, J., Hong, B., and Collins, R.W., Appl. Phys. Lett. 69, 1716 (1996).
McGinnis, S.P., Kelly, M.A., and Alvis, R.L., J. Appl. Phys. 79, 170 (1996).
Fan, Q.H., Ali, N., Kousar, Y., Ahmed, W., and Gracio, J., J. Mater. Res. 17, 1563 (2002).
Silva, F., Gicquel, A., Chiron, A., and Achard, J., Diamond Relat. Mater. 9, 1965 (2000).
Gicquel, A., Hassouni, K., and Silva, F., J. Electrochem. Soc. 14716, 2218 (2000).
Zhu, W., Badzian, A.R., and Messier, R., in Diamond Optics 111, San Diego, CA, 1990 (SPIE Bellingham, WA, 1990), p. 187.
Chen, C.F. and Hong, T.M., Surf. Coat. Technol. 5, 143 (1993).
Kumar, S., Dixit, P.N., Sarangi, D., and Bhattacharyya, R., J. Appl. Phys. 85, 3866 (1999).
Fan, Q.H., Gracio, J., and Pereira, E., J. Appl. Phys. 87, 2880 (2000).
Wagner, J., Wild, C., and Koidl, P., Appl. Phys. Lett. 59, 779 (1991).
Fan, Q.H., Ph.D. Thesis, Department of Physics, University of Aveiro, Aveiro, Portugal (1998).
Ali, N., Fan, Q.H., Ahmed, W., and Gracio, J., Thin Solid Films (in press).
Kulisch, W., Ackermann, L., and Sobisch, G., Phys. Status Solidi A 154, 155 (1996).
Ager, J.W. and Drory, M.D., Phys. Rev. B 48, 2601 (1993).
Hayashi, Y., Drawl, W., and Messier, R., Jpn. J. Appl. Phys. 31, L194 (1992).

Related content

Powered by UNSILO

Promoting secondary nucleation using methane modulations during diamond chemical vapor deposition to produce smoother, harder, and better quality films

  • N. Ali (a1), V.F. Neto (a1) and J. Gracio (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.