Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-07T01:53:21.977Z Has data issue: false hasContentIssue false

Preparation of Cu(In,Ga)Se2 thin films from In–Ga–Se precursors for high-efficiency solar cells

Published online by Cambridge University Press:  31 January 2011

S. Nishiwaki
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan
T. Satoh
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan
S. Hayashi
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan
Y. Hashimoto
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan
T. Negami
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan
T. Wada
Affiliation:
Central Research Laboratories, Matsushita Electric Ind. Co., Ltd., 3–4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619–0237, Japan
Get access

Abstract

Growth of Cu(In,Ga)Se2 (CIGS) films from In–Ga–Se precursors was characterized by scanning Auger electron spectroscopy (SAES), secondary ion mass spectroscopy (SIMS), x-ray diffraction, scanning electron microscopy, and transmission electron microscopy (TEM). In–Ga–Se precursor layers were deposited on Mo-coated soda-lime glass, and then the layers were exposed to Cu and Se fluxes to form CIGS films. The SIMS and SAES analyses showed a homogeneous distribution of Cu throughout the CIGS films during the deposition of Cu and Se. The phase changes observed in the CIGS films during the deposition of Cu and Se on the In–Ga–Se precursor films were as follows: (In,Ga)2Se3 →[Cu(In,Ga)5Se8] →Cu(In,Ga)3Se5 →Cu(In,Ga)Se2. The grain size increased from the submicron grains of the (In,Ga)2Se3 precursor film to several micrometers in the stoichiometric Cu(In,Ga)Se2 film. A growth model of CIGS crystals is introduced on the basis of the results of TEM observations. CIGS crystals are mainly grown under (In,Ga)-rich conditions in the preparation from In–Ga–Se precursor films.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaffe, J.E. and Zunger, A., Phys. Rev. B 29, 1882 (1984).CrossRefGoogle Scholar
2.Schock, H.W., Appl. Surf. Sci. 92, 606 (1994).CrossRefGoogle Scholar
3.Rockett, A. and Birkmire, R.M., J. Appl. Phys. 70, R81 (1991).CrossRefGoogle Scholar
4.Gabor, A.M., Tuttle, J.R., Albin, D.S., Tennant, A.L., Contreras, M.A., and Noufi, R., AIP Conf. Proc. 306, Proc. 12th NREL Photovoltaic Program Review Meeting (AIP, New York, 1994), p. 59.Google Scholar
5.Wada, T., in Inst. Phys. Conf. Ser. 152: Ternary and Multinary Compounds, Proc. 11th Conf. on Ternary and Multinary Compounds, Salford, 1997 (IOP, 1998), p. 903.Google Scholar
6.Wada, T., Kohara, N., Negami, T., and Nishitani, M., J. Mater. Res. 12, 1456 (1997).CrossRefGoogle Scholar
7.Klenk, R., Walter, T., Schock, H.W., and Cahen, D., Adv. Mater. 5, 114 (1993).CrossRefGoogle Scholar
8.Tuttle, J.R., Contreras, M.A., Bode, M.H., Niles, D., Albin, D.S., Matson, R., Gabor, A.M., Tennant, A., Duda, A., and Noufi, R., J. Appl. Phys. 77, 153 (1995).CrossRefGoogle Scholar
9.Kohara, N., Negami, T., Nishitani, M., and Wada, T., Jpn. J. Appl. Phys. 34, L1141 (1995).CrossRefGoogle Scholar
10.Gartsman, K., Chernyak, L., Lyahovitskaya, V., Cahen, D., Didik, V., Kozlovsky, V., Malkovich, R., Skoryatina, E., and Usacheva, V., J. Appl. Phys. 82, 4282 (1997).CrossRefGoogle Scholar
11.Cattarin, S., Pagura, C., Armelao, L., Bertoncello, R., and Dietz, N., J. Electrochem. Soc. 142, 2818 (1995).CrossRefGoogle Scholar
12.Konagai, M., Ohtake, Y., and Okamoto, T., in Thin Films for Photovoltaic and Related Device Applications, edited by Ginley, D., Catalans, A., Schock, H.W., Eberspacher, C., Peterson, T.M., and Wada, T. (Mater. Res. Soc. Symp. Proc. 426, Pittsburgh, PA, 1996), p. 153.Google Scholar
13.Negami, T., Kohara, N., Nishitani, M., Wada, T., and Hirao, T., Appl. Phys. Lett. 67, 825 (1995).CrossRefGoogle Scholar
14.Fearheley, M.L., Sol. Cells 16, 91 (1986).CrossRefGoogle Scholar
15.Boehke, U-C. and Kuhn, G., J. Mater. Sci. 22, 1635 (1987).CrossRefGoogle Scholar
16.Folmer, J.C.W, Turner, J.A., Noufi, R., and Cahen, D., J. Electrochem. Soc. 132, 1319 (1985).CrossRefGoogle Scholar
17.Frangis, N., Tendeloo, G.V., Manolikas, C., Landuyt, J.V., and Amelinckx, S., Phys. Status Solidi 96, 53 (1986).CrossRefGoogle Scholar
18.Tseng, B.H. and Wert, C.A., J. Appl. Phys. 65, 2254 (1988).CrossRefGoogle Scholar
19.Hanada, T., Yamana, A., Nakamura, Y., Nittono, O., and Wada, T., Jpn. J. Appl. Phys. 36, L1494 (1997).CrossRefGoogle Scholar
20.Wada, T., Sol. Energy Mater. Sol. Cells 49, 249 (1997).CrossRefGoogle Scholar