Skip to main content Accessibility help

Preparation, microstructure, and compressive strength of carbon foams derived from sucrose and kaolinite

  • Haipeng Ji (a1), Zhaohui Huang (a1), Xiaowen Wu (a1), Juntong Huang (a1), Kai Chen (a1), Minghao Fang (a1) and Yan’gai Liu (a1)...


Carbon foams were successfully fabricated from sucrose and kaolinite clay by thermo-foaming method using aluminum nitrate as the blowing agent. The phases, pore structure, and compressive strength were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and mechanical test, respectively. The foams had porous structure with spherical open cells of size in the range of 400–1000 μm, dense struts, and interconnected voids of size in the range of 100–600 μm. Both smooth and coarse types of voids are observed. Mullite and cristobalite, products of the clay mineral, are concentrated more on the strut and cell walls. The ultimate compressive strength evolution is found to be in correlation with the amount of voids and the microcracking in the carbon foams.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Ford, W.D.: Cellular refractory thermal insulating material. U.S. Patent No. 3 121 050, 1964.
2.Googin, J., Napier, J., and Scrivner, M.: Method for making manufacturing foam carbon products. U.S. Patent No. 3 345 440, 1967.
3.Gallego, N.C. and Klett, J.W.: Carbon foams for thermal management. Carbon 41, 1461 (2003).
4.Amini, N., Aguey-Zinsou, K.F., and Guo, Z.X.: Processing of strong and highly conductive carbon foams as electrode. Carbon 49, 3857 (2011).
5.Mehtaa, R., Andersonb, D.P., and Hagerc, J.W.: Graphitic open-celled carbon foams: processing and characterization. Carbon 41, 2174 (2003).
6.Mukai, S.R., Tamitsuji, C., Nishihara, H., and Tamon, H.: Preparation of mesoporous carbon gels from an inexpensive combination of phenol and formaldehyde. Carbon 43, 2628 (2005).
7.Nishihara, H., Mukai, S.R., and Tamon, H.: Preparation of resorcinol-formaldehyde carbon cryogel microhoneycombs. Carbon 42, 899 (2004).
8.Yamashita, J., Ojima, T., Shioya, M., Hatori, H., and Yamada, Y.: Organic and carbon aerogels derived from poly (vinyl chloride). Carbon 41, 285 (2003).
9.Inagaki, M., Morishita, T., Kuno, A., Kito, T., Hirano, M., Suwa, T., and Kusakawa, K.: Carbon foams prepared from polyimide using urethane foam template. Carbon 42, 497 (2004).
10.Klett, J.W., Mcmillan, A.D., Gallego, N.C., and Walls, C.A.: The role of structure on the thermal properties of graphitic foams. J. Mater. Sci. 39, 3659 (2004).
11.Li, T.Q., Wang, C.Y., An, B.X., and Wang, H.: Preparation of graphitic carbon foam using size-restriction method under atmospheric pressure. Carbon 43, 2030 (2005).
12.Ryoo, R., Joo, S.H., Kruk, M., and Jaroniec, M.: Ordered mesoporous carbons. Adv. Mater. 13, 677 (2001).
13.Bakandritsos, A., Steriotis, T., and Petridis, D.: High surface area montmorillonite-carbon composites and derived carbon. Chem. Mater. 16, 1551 (2004).
14.Scherdel, C. and Reichenauer, G.: Microstructure and morphology of porous carbons derived from sucrose. Carbon 47, 1102 (2009).
15.Cao, Y., Cao, J., Zheng, M., Liu, J., and Ji, G.: Synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing nickel oxide nanoparticles using sucrose and nickel acetate in a silica template. J. Solid State Chem. 180, 792 (2007).
16.Armandi, M., Bonelli, B., Geobaldo, F., and Garrone, E.: Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous Mesoporous Mater. 132, 414 (2010).
17.Böhme, K., Einicke, W.D., and Klepel, O.: Templated synthesis of mesoporous carbon from sucrose-the way from the silica pore filling to the carbon material. Carbon 43, 1918 (2005).
18.Prabhakaran, K., Singh, P.K., Gokhale, N.M., and Sharma, S.C.: Processing of sucrose to low density carbon foams. J. Mater. Sci. 42, 3894 (2007).
19.Narasimman, R. and Prabhakaran, K.: Preparation of carbon foams by thermo-foaming of activated carbon powder dispersions in an aqueous sucrose resin. Carbon 50, 5583 (2012).
20.Narasimman, R. and Prabhakaran, K.: Preparation of low density carbon foams by foaming molten sucrose using an aluminium nitrate blowing agent. Carbon 50, 1999 (2012).
21.Wang, X.Y., Zhong, J.M., Wang, Y.M., and Yu, M.F.: A study of the properties of carbon foam reinforced by clay. Carbon 44, 1560 (2006).
22.Wu, X.W., Liu, Y.G., Fang, M.H., Mei, L.F., and Luo, B.C.: Preparation and characterization of carbon foams derived from aluminosilicate and phenolic resin. Carbon 49, 1782 (2011).
23.Wu, X.W., Fang, M.H., Mei, L.F., and Luo, B.C.: Effect of final pyrolysis temperature on the mechanical and thermal properties of carbon foams reinforced by aluminosilicate. Mater. Sci. Eng., A 558, 446 (2012).
24.Sanz, J., Madani, A., and Serratosa, J.M.: Aluminum-27 and silicon-29 magic-angle-spinning nuclear magnetic resonance study of the kaolinite-mullite transformation. J. Am. Ceram. Soc. 71, 418 (1988).
25.Klett, J., Hardy, R., Romine, E., Walls, C., and Burchell, T.: High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties. Carbon 38, 953 (2000).
26.Wang, S.B., Luo, R.Y., and Ni, Y.F.: Preparation and characterization of resin-derived carbon foams reinforced by hollow ceramic microspheres. Mater. Sci. Eng., A 527, 3392 (2010).
27.He, X., Tang, Z.H., Zhu, Y.F., and Yang, J.H.: Fabrication of carbon foams with low thermal conductivity using the protein foaming method. Mater. Lett. 94, 55 (2013).
28.Shen, H.B. and Nutt, S.: Mechanical characterization of short fiber reinforced phenolic foam. Compos. Part A 34, 899 (2003).
29.Voigt, C., Storm, J., Abendroth, M., Aneziris, C.G., Kuna, M., and Hubaálková, J.: The influence of the measurement parameters on the crushing strength of reticulated ceramic foams. J. Mater. Res. 28, 2288 (2013).
30.Seeber, B.S.M., Gonzenbach, U.T., and Gauckler, L.J.: Mechanical properties of highly porous alumina foams. J. Mater. Res. 28, 2281 (2013).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed