Skip to main content Accessibility help
×
Home

Preparation, characterization, and luminescent properties of NaGd(WO4)2:Eu3+ nanotubes using carbon nanotubes as templates

  • Ying Huang (a1), Liqun Zhou (a1), Hejuan Song (a1), Ting Wang (a1), Lan Yang (a1) and Ling Li (a1)...

Abstract

NaGd(WO4)2:Eu3+ nanotubes have been successfully synthesized by the hydrothermal method using carbon nanotubes (CNTs) as removable templates. X-ray diffraction, thermogravimetric and differential thermal analysis, transmission electron microscopy, and photoluminescence were used to characterize the product. It is demonstrated that CNTs are fully coated with an amorphous NaGd(WO4)2:Eu3+ layer, which is about 7 nm thick and almost continuous and uniform. After the NaGd(WO4)2:Eu3+/CNTs composites have been calcined at 500 or 600 °C, NaGd(WO4)2:Eu3+ nanotubes are obtained by removing the CNTs templates, and the outer diameter of that is about 40 nm. The luminescence properties of the NaGd(WO4)2:Eu3+ nanotubes calcined at various temperatures have been investigated. The results indicate that the products exhibit a characteristic red emission peak of Eu3+ ions at 615 nm. The emission intensity decreases with the increasing of annealing temperature, which is probably because a few residual carbons doped in NaGd(WO4)2:Eu3+ nanotubes and many oxygen vacancies could promote the intensity of red emission of Eu3+.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: huangying1114@163.com
b)e-mail: zlq@hubu.edu.cn

References

Hide All
1.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).
2.Ajayan, P.M., Stephan, O., Redlich, P., and Colliex, C.: Carbon nanotubes as removable templates for metal-oxide nanocomposites and nanostructures. Nature 357, 564 (1995).
3.Min, Y.S., Bae, E.J., Jeong, K.S., Cho, Y.J., Lee, J.H., Choi, W.B., and Park, G.S.: Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template. Adv. Mater. 15, 1019 (2003).
4.Zhang, D., Fu, H., Shi, L., Fang, J., and Li, Q.: Carbon nanotube assisted synthesis of CeO2 nanotubes. J. Solid State Chem. 180, 654 (2007).
5.Sun, Z., Yuan, H., Liu, Z., Han, B., and Zhang, X.: A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993 (2005).
6.Neeraj, S., Kijima, N., and Cheetham, A.K.: Novel red phosphors for solid-state lighting: The system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd, Y, Bi). Chem. Phys. Lett. 387, 2 (2004).
7.Han, X.M. and Wang, G.F.: Growth and spectral properties of Nd3+:KLa(WO4)2 crystal. J. Cryst. Growth 249, 167 (2003).
8.Li, X.Z., Lin, Z.B., Zhang, L.Z., and Zhang, G.F.: Growth, thermal and spectral properties of Nd3+-doped NaGd(MoO4)2 crystal. J. Cryst. Growth 290, 670 (2006).
9.Voron’ko, Y.K., Subbotin, K.A., Shukshin, V.E., Ushakov, S.N., Popov, A.V., and Zharikov, E.V.: Growth and spectroscopic investigations of Yb3+-doped NaGd(MoO4)2 and NaLa(MoO4)2-new promising laser crystals. Opt. Mater. 29, 246 (2006).
10.Mandrik, A.V., Troshin, A.E., Kisel, V.E., Yasukevich, A.S., Klavsut, G.N., Kuleshov, N.V., and Pavlyuk, A.A.: CW and Q-switched diode-pumped laser operation of Yb3+:NaLa(MoO4)2. Appl. Phys. B. Lasers Opt. 81, 1119 (2005).
11.Kuz’micheva, G.M., Lis, D.A., Subbotin, K.A., Rybakov, V.B., and Zharikov, E.V.: Growth and structural x-ray investigations of scheelite-like single crystals Er,Ce:NaLa(MoO4)2 and Yb:NaGd(MoO4)2. J. Cryst. Growth 275, 1835 (2005).
12.Esteban-Betegoìn, F., Zaldo, C., and Cascales, C.: Hydrothermal Yb3+-doped NaGd(WO4)2 nano- and micrometer-sized crystals with preserved photoluminescence properties. Chem. Mater. 22, 2315 (2010).
13.Yan, B., Lin, L.X., Wu, J.H., and Lei, F.: Photoluminescence of rare earth phosphors Na0.5Gd0.5WO4: RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4:RE3+ (RE = Eu, Sm, Dy). J. Fluoresc. 21, 203 (2011).
14.Yang, H.P., Zhang, D.G., Shi, L.Y., and Fang, J.H.: Synthesis and strong red photoluminescence of europium oxide nanotubes and nanowires using carbon nanotubes as templates. Acta Mater. 56, 955 (2008).
15.Shi, D., Lian, J., Wang, W., Liu, G., He, P., Dong, Z., Wang, L.M., and Ewing, R.C.: Luminescent carbon nanotubes by surface functionalization. Adv. Mater. 18, 189 (2006).
16.Sun, Y., Wilson, S.R., and Schuster, D.I.: High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J. Am. Chem. Soc. 123, 5348 (2001).
17.Riggs, J.E., Guo, Z., Carroll, D.L., and Sun, Y.P.: Strong luminescence of solubilized carbon nanotubes. J. Am. Chem. Soc. 122, 5879 (2000).
18.Li, Q.W., Sun, B.Q., Kinloch, I.A., Zhi, D., Sirringhaus, H., and Windle, A.H.: Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes. Chem. Mater. 18, 164 (2006).
19.Talapin, D.V., Rogach, A.L., Shevchenko, E.V., Kornowski, A., Haase, M., and Weller, H.: Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124, 5782 (2002).
20.Lei, F., Yan, B., Chen, H.H., and Zhao, J.T.: Surfactant-assisted hydrothermal synthesis of Eu3+-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2. Inorg. Chem. 48, 7576 (2009).
21.Wang, Y., Endo, T., He, L., and Wu, C.: Synthesis and photoluminescence of Eu3+-doped (Y,Gd)BO3 phosphors by a mild hydrothermal process. J. Cryst. Growth 268, 568 (2004).
22.Tachikawa, T., Tojo, S., Kawai, K., Endo, M., Fujitsuka, M., Ohno, T., Nishijima, K., Miyamoto, Z., and Majima, T.: Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. B 108, 19299 (2004).
23.Ignatovych, M., Holovey, V., Watterich, A., Vidóczy, T., Baranyai, P., Kelemen, A., Ogenko, V., and Chuiko, O.: Luminescence characteristics of Cu- and Eu-doped Li2B4O7. Radiat. Meas. 38, 567 (2004).
24.Pizani, P.S., Leite, E.R., Pontes, F.M., Paris, E.C., Rangel, J.H., Lee, J.H., Longo, E., Delega, P., and Varela, J.A.: Photoluminescence of disordered ABO3 perovskites. Appl. Phys. Lett. 77, 824 (2000).
25.Chen, L.M., Liu, Y.N., and Li, Y.D.: Preparation and characterization of ZrO2:Eu3+ phosphors. J. Alloys Compd 381, 266 (2004).
26.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).
27.Park, J.H., Kim, S., and Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).
28.Gu, F., Wang, S.F., Lu, M.K., Zhou, G.J., Xu, D., and Yuan, D.R.: Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B 108, 8119 (2004).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed