Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T00:23:52.560Z Has data issue: false hasContentIssue false

Preparation and characterization of visible light sensitive Fe- and Ta-codoped TiO2 photocatalyst

Published online by Cambridge University Press:  31 January 2011

Jinhua Ye*
Affiliation:
Photocatalytic Materials Center, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: Jinhua.ye@nims.go.jp
Get access

Abstract

Titania (TiO2) was modified by codoping of Fe3+ and Ta5+ to absorb visible light. The codoped titania [(Fe,Ta)xTi1–xO2, 0 ≤ x ≤ 1] were prepared by a solid state reaction or by the polymer complex method. With increased codoping, the optical absorption spectra are red-shifted and the color ranges from white to brown via yellow. Also, the codoped titania (0 < x ≤ 0.05) possesses photocatalytic activity for organic decomposition under visible light irradiation. The codoped titania (x = 0.01) with yellow color shows the highest activity among the codoped titania (0 ≤ x ≤ 1) and a higher activity than the 1% Fe3+-doped TiO2 with orange brown color.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A., Hashimoto, K., Watanabe, T.TiO2 Photocatalysis Fundamentals and Applications (BKC Inc., Tokyo, Japan 1999)Google Scholar
2.Fujishima, A., Honda, K.Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
3.Hoffmann, M.R., Martin, S.T., Choi, W.Y., Bahnemann, D.W.Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
4.Hashimoto, K., Irie, H., Fujishima, A.TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys., Part 1 44, 8269 (2005)CrossRefGoogle Scholar
5.Mcneil, L.E., French, R.H.Multiple scattering from rutile TiO2 particles. Acta Mater. 48, 4571 (2000)CrossRefGoogle Scholar
6.Wu, N.L., Wang, S.Y., Rusakova, I.A.Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science 285, 1375 (1999)CrossRefGoogle ScholarPubMed
7.Hirakawa, T., Daimon, T., Kitazawa, M., Ohguri, N., Koga, C., Negishi, N., Matsuzawa, S., Nosaka, Y.An approach to estimating photocatalytic activity of TiO2 suspension by monitoring dissolved oxygen and superoxide ion on decomposing organic compounds. J. Photochem. Photobiol., A 190, 58 (2007)CrossRefGoogle Scholar
8.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
9.Kou, J.H., Zhang, H.T., Yuan, Y.P., Li, Z.S., Wang, Y., Yu, T., Zou, Z.G.Efficient photodegradation of phenanthrene under visible light irradiation via photosensitized electron transfer. J. Phys. Chem. C 112, 4291 (2008)CrossRefGoogle Scholar
10.Tokudome, H., Miyauchi, M.Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. Chem. Lett. 33, 1108 (2004)CrossRefGoogle Scholar
11.Abe, R., Takami, H., Murakami, N., Ohtani, B.Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780 (2008)CrossRefGoogle ScholarPubMed
12.Wang, D.F., Kako, T., Ye, J.H.Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25)(Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc. 130, 2724 (2008)CrossRefGoogle Scholar
13.Maeda, K., Teramura, K., Lu, D.L., Takata, T., Saito, N., Inoue, Y., Domen, K.Photocatalyst releasing hydrogen from water—Enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 440, 295 (2006)CrossRefGoogle Scholar
14.Kako, T., Kikugawa, N., Ye, J.H.Photocatalytic activities of AgSbO3 under visible light irradiation. Catal. Today 131, 197 (2008)CrossRefGoogle Scholar
15.Zang, L., Macyk, W., Lange, C., Maier, W.F., Antonius, C., Meissner, D., Kisch, H.Visible-light detoxification and charge generation by transition metal chloride modified titania. Chem. Eur. J. 6, 379 (2000)3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
16.Serpone, N., Lawless, D., Disdier, J., Herrmann, J.M.Spectroscopic, photoconductivity and photocatalytic studies of TiO2 colloids—Naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir 10, 643 (1994)CrossRefGoogle Scholar
17.Choi, W.Y., Termin, A., Hoffmann, M.R.The role of metal-ion dopants in quantum-sized TiO2—Correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994)CrossRefGoogle Scholar
18.Wang, C.Y., Bahnemann, D.W., Dohrmann, J.K.A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem. Commun. 16, 1539 (2000)CrossRefGoogle Scholar
19.Yamashita, H., Harada, M., Misaka, J., Takeuchi, M., Neppolian, B., Anpo, M.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2. Catal. Today 84, 191 (2003)CrossRefGoogle Scholar
20.Umebayashi, T., Yamaki, T., Itoh, H., Asai, K.Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909 (2002)CrossRefGoogle Scholar
21.Ishii, T., Kato, H., Kudo, A.H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J. Photochem. Photobiol., A 163, 181 (2004)CrossRefGoogle Scholar
22.Kakihana, M., Yoshimura, M.Synthesis and characteristics of complex multicomponent oxides prepared by polymer complex method. Bull. Chem. Soc. Jpn. 72, 1427 (1999)CrossRefGoogle Scholar
23.Li, P., Xu, H.B., Zhang, Y., Li, Z.H., Zheng, S.L., Bai, Y.L.The effects of Al and Ba on the colour performance of chromic oxide green pigment. Dyes Pigm. 80, 287 (2009)CrossRefGoogle Scholar
24.Ohko, Y., Hashimoto, K., Fujishima, A.Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J. Phys. Chem. A 101, 8057 (1997)CrossRefGoogle Scholar
25.Kako, T., Zou, Z.G., Katagiri, M., Ye, J.H.Decomposition of organic compounds over NaBiO3 under visible light irradiation. Chem. Mater. 19, 198 (2007)CrossRefGoogle Scholar
26.Kako, T., Ye, J.H.Comparison of photocatalytic activities of two kinds of lead magnesium niobate for decomposition of organic compounds under visible-light irradiation. J. Mater. Res. 22, 2590 (2007)CrossRefGoogle Scholar
27.Wang, Y., Pang, G.S., Chen, Y., Jiao, S.H., Wang, D., Feng, S.H.Preparation and magnetic properties of Fe3+-Nb5+ co-doped SnO2. J. Solid State Chem. 181, 217 (2008)CrossRefGoogle Scholar
28.Nagaveni, K., Hegde, M.S., Madras, G.Structure and photocatalytic activity of Ti1–xMxO2 (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J. Phys. Chem. B 108, 20204 (2004)CrossRefGoogle Scholar
29.Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E., Stepanyan, G.M., Khachaturyan, E.A., Wang, H., Turner, J.A.Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3-Nb2O5. Sol. Energy 80, 1098 (2006)CrossRefGoogle Scholar
30.Zhao, Z.Y., Liu, Q.J.Effects of lanthanide doping on electronic structures and optical properties of anatase TiO2 from density-functional theory calculations. J. Phys. D 41, 085417 (2008)CrossRefGoogle Scholar
31.Niishiro, R., Kato, H., Kudo, A.Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions. Phys. Chem. Chem. Phys. 7, 2241 (2005)CrossRefGoogle ScholarPubMed
32.Kyriaki, E.K., Xenophon, E.V.Effects of altervalent cation doping of TiO2 on its performance as a photocatalyst for water cleavage. J. Phys. Chem. 97, 1184 (1993)Google Scholar
33.Atkins, P., Paula, J.D.Atkins’ Physical Chemistry 8th ed (Oxford Univ. Press, Oxford, UK 2006)483Google Scholar
34.Weyl, W.A., Forland, T.Photochemistry of rutile. Ind. Eng. Chem. 42, 257 (1950)CrossRefGoogle Scholar
35.Isobe, T.Photoluminescence and local structure of organic/inorganic hybrid ZnS:Mn nanocrystal phosphors. Hyoumen Kagaku 22, 315 (2001)CrossRefGoogle Scholar
36.Jansen, M., Letschert, H.P.Inorganic yellow-red pigments without toxic metals. Nature 404, 980 (2000)CrossRefGoogle ScholarPubMed
37.Biswas, S.K., Dhak, D., Pathak, A., Pramanik, P.Chemical synthesis of environment-friendly nanosized yellow titanate pigments. Mater. Res. Bull. 43, 665 (2008)CrossRefGoogle Scholar
38.Correia, A.M., Clark, R.J.H., Ribeiro, M.I.M., Duarte, M.L.T.S.Pigment study by Raman microscopy of 23 paintings by the Portuguese artist Henrique Pousao (1859–1884). J. Raman Spectrosc. 38, 1390 (2007)CrossRefGoogle Scholar
39.Jeong, E.D., Borse, P.H., Hang, J.S., Lee, J.S., Jung, O.S., Chang, H., Jin, J.S., Won, M.S., Kim, H.G.Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst. J. Ceram. Process. Res. 9, 250 (2008)Google Scholar