Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T16:43:33.676Z Has data issue: false hasContentIssue false

Preparation and characterization of SrBi2Nb2O9 thin films made by polymeric precursors

Published online by Cambridge University Press:  31 January 2011

S. M. Zanetti
Affiliation:
Departamento de Química–UFSCar, P.O. Box 676, 13560–905 São Carlos, SP, Brazil
E. R. Leite
Affiliation:
Departamento de Química–UFSCar, P.O. Box 676, 13560–905 São Carlos, SP, Brazil
E. Longo
Affiliation:
Departamento de Química–UFSCar, P.O. Box 676, 13560–905 São Carlos, SP, Brazil
J. A. Varela
Affiliation:
Instituto de Química–UNESP, P.O. Box 355, 14801–970 Araraquara, SP, Brazil
Get access

Abstract

A polymeric precursor solution was employed in preparing SrBi2Nb2O9 (SBN) powder and thin films dip coated onto Si(100) substrate. XRD results show that the SBN perovskite phase forms at temperatures as low as 600 °C through an intermediate fluorite phase. This fluorite phase is observed for samples heat-treated at temperatures of 400 and 500 °C. After heat treatment at temperatures ranging from 300 to 800 °C, thin films were shown to be crack free. Grazing incident angle XRD characterization shows the occurrence of the fluorite intermediate phase for films also. The thickness of films, measured by MEV, was in the order of 80–100 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ito, Y., Ushikubo, M., Yokoyama, S., Matsunaga, H., Atsuki, T., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 35, 4925 (1996).CrossRefGoogle Scholar
2.Noguchi, T., Hase, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 35, 4900 (1996).CrossRefGoogle Scholar
3.Oishi, Y., Wu, W., Fumoto, K., Okuyama, M., and Hamakawa, Y., Jpn. J. Appl. Phys. 35, 1242 (1996).CrossRefGoogle Scholar
4.Dat, L., Lee, J. K., Auciello, O., and Kingon, A. I., Appl. Phys. Lett. 67, 572 (1995).CrossRefGoogle Scholar
5.Tabata, H., Tanaka, H., and Kawai, T., Jpn. J. Appl. Phys. 34, 5146 (1995).CrossRefGoogle Scholar
6.Zhu, Y., Desu, S. B., Li, T., Ramanathan, S., and Nagata, M., J. Mater. Res. 12, 783 (1997).CrossRefGoogle Scholar
7.Li, T., Zhu, Y., and Desu, S. B., J. Appl. Phys. 68, 5 (1996).Google Scholar
8.Watanabe, H., Mihara, T., Yoshimori, H., and Araujo, C. A. P., Jpn. J. Appl. Phys. 34, 5240 (1995).CrossRefGoogle Scholar
9.Chu, P. Y., Jones, R. E., Jr., Zurcher, P., Taylor, D. J., Jiang, B., Gillespie, S. J., Lii, Y. T., Kottke, M., Fejes, P., and Chen, W., J. Mater. Res. 11, 1065 (1996).CrossRefGoogle Scholar
10.Al-Shareef, H. N., Dimos, D., Boyle, T. J., Warren, W. L., and Tuttle, B. A., Appl. Phys. Lett. 68 (5), 690 (1996).CrossRefGoogle Scholar
11.Atsuki, T., Soyama, N., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 34, 5096 (1995).CrossRefGoogle Scholar
12.Pechini, M. P., U.S. Patent 3,330,697 (1967).Google Scholar
13.Bouquet, V., Zanetti, S. M., Foschini, C. R., Leite, E. R., Longo, E., and Varela, J. A., Ceram. Trans. (1997).Google Scholar
14.Zanetti, S. M., Longo, E., Varela, J. A., and Leite, E. R., Mater. Lett. 31, 173 (1997).CrossRefGoogle Scholar
15.Boyle, T. J., Buchheit, C. D., Rodriguez, M. A., Al-Shareef, H. N., Hernandez, B. A., Scott, B., and Ziller, J. W., J. Mater. Res. 11, 2274 (1996).CrossRefGoogle Scholar
16.Rodriguez, M. A., Boyle, T. J., Hernandez, B. A., Buchheit, C. D., and Eatough, M. O., J. Mater. Res. 11, 2282 (1996).CrossRefGoogle Scholar
17.Subbarao, E. C., J. Phys. Chem. Solids 23, 665 (1992).CrossRefGoogle Scholar