Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T08:17:26.520Z Has data issue: false hasContentIssue false

Praseodymium and high-temperature superconductivity: Thermodynamic, structural, and critical correlations

Published online by Cambridge University Press:  31 January 2011

V. E. Lamberti
Affiliation:
Princeton Materials Institute and the Department of Geosciences, Princeton University, Princeton, New Jersey 08544
M. A. Rodriguez
Affiliation:
Princeton Materials Institute and the Department of Geosciences, Princeton University, Princeton, New Jersey 08544
J. D. Trybulski
Affiliation:
Princeton Materials Institute and the Department of Geosciences, Princeton University, Princeton, New Jersey 08544
A. Navrotsky
Affiliation:
Princeton Materials Institute and the Department of Geosciences, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

The enthalpies of formation and the partial molar enthalpies of oxidation of polycrystalline LnBa2Cu3Oy (Ln = Pr, Nd, Eu, Gd, Dy, Ho, Tm) and Y1−xPrxBa2Cu3Oy (x = 0.0, 0.1, 0.2, 0.5, 0.8, 0.9, 1.0) have been determined at 298 K by drop-solution calorimetry. The thermodynamic characteristics of Pr123 follow the trends of the trivalent-ion-based Ln123 compounds. The thermodynamic data for the (Y,Pr)123 solid solutions show nonideal solution behavior, but no x-dependent valence instability. The superconducting critical temperatures and the enthalpies of oxidation of the (Y,Pr)123 solid solutions are linearly related.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Soderholm, L., Zhang, K., Hinks, D. G., Beno, M. A., Jorgen-son, J. D., Sergre, C. U., and Schuller, I. K., Nature (London) 328, 604 (1987).Google Scholar
2.Li, W-H., Lynn, J.W., Skanthakumar, S., Clinton, T.W., Kebede, A., Jee, C-S., Crow, J.E., and Mihalisin, T., Phys. Rev. B 40, 5300 (1989).Google Scholar
3.Phillips, N. E., Fisher, R. A., Caspary, R., Amato, A., Radousky, H.B., Peng, J. L., Zhang, L., and Shelton, R.N., Phys. Rev. B 43, 11488 (1991).Google Scholar
4.Hilscher, G., Holland-Moritz, E., Holubar, T., Jostarndt, H-D., Nekvasil, V., Schaudy, G., Walter, U., and Fillion, G., Phys. Rev. B 49, 535 (1994).CrossRefGoogle Scholar
5.Lowe-Ma, C. K. and Vanderah, T. A., Physica C 201, 233 (1992).CrossRefGoogle Scholar
6.Kinoshita, K., Matsuda, A., Shibata, H., Ishii, T., Watanabe, T., and Yamada, T., Jpn. J. Appl. Phys. 27, L1642 (1988).CrossRefGoogle Scholar
7.Booth, C. H., Bridges, F., Boyce, J. B., Claeson, T., Zhao, Z. X., and Cervantes, P., Phys. Rev. B 49, 3443 (1994).CrossRefGoogle Scholar
8.Guillaume, M., Allenspach, P., Mesot, J., Roessli, B., Staub, U., Fisher, P., and Furrer, A., Z. Phys. B 90, 13 (1993).CrossRefGoogle Scholar
9.Radousky, H. B., J. Mater. Res. 7, 1917 (1992).Google Scholar
10.López-Morales, M. E., Ríos-Jara, D., Tagüeña, J., Esucero, R., La Placa, S., Bezinge, A., Lee, V. Y., Engler, E.M., and Grant, P. M., Phys. Rev. B 41, 6655 (1990).CrossRefGoogle Scholar
11.Soderholm, L., Loong, C-K., Goodman, G.L., and Dabrowski, B.D., Phys. Rev. B 43, 7923 (1991).Google Scholar
12.Guo, G. Y. and Temmerman, W. M., Phys. Rev. B 41, 6372 (1990).CrossRefGoogle Scholar
13.Tarascon, J. M., McKinnon, W.R., Greene, L.H., Hull, G.W., and Vogel, E. M., Phys. Rev. B 36, 226 (1987).CrossRefGoogle Scholar
14.Shannon, R. D., Acta Crystallogr. A 32 751 (1976).CrossRefGoogle Scholar
15.Nagoshi, M., Fukuda, Y., and Suzuki, T., J. Electron. Spectrosc. Relat. Phenom. 66, 257 (1994).Google Scholar
16.Xu, Y. and Guan, W., Physica C 183, 105 (1991).Google Scholar
17.Malik, S. K., Tomy, C.V., and Bhargava, P., Phys. Rev. B 44, 7042 (1991).CrossRefGoogle Scholar
18.Abrikosov, A. A. and Gor'kov, L.P., Zh. Eksp. Teor. Fiz. 39, 1781 (1961).Google Scholar
19.Abrikosov, A. A., private communication.Google Scholar
20.Navrotsky, A., Phys. Chem. Minerals 2, 89 (1977).Google Scholar
21.Zhou, Z. and Navrotsky, A., J. Mater. Res. 7, 2920 (1992).Google Scholar
22.Zhou, Z., McClure, D.S., and Navrotsky, A., Phys. Chem. Glasses 34, 251 (1993).Google Scholar
23.Takayama-Muromachi, E. and Navrotsky, A., J. Solid State Chem. 106, 349 (1993).CrossRefGoogle Scholar
24.Kebede, A., Jee, C. S., Schwegler, J., Crow, J. E., Mihalisin, T., Myer, G. H., Salomon, R.E., Schlottmann, P., Kuric, M. V., Bloom, S.H., and Guertin, R. P., Phys. Rev. B 40, 4453 (1989).Google Scholar
25.Lütgemeier, H., J. Magn. Magn. Mater. 90/91, 633 (1990).CrossRefGoogle Scholar
26.Maple, M.B., Paulius, L. M., and Neumeier, J.J., Physica C 195, 64 (1992).Google Scholar
27.Liu, H. B., unpublished data.Google Scholar
28.Nieva, G., Ghamaty, S., Lee, B.W., Maple, M. B., and Schuller, I.K., Phys. Rev. B 44, 6999 (1991).CrossRefGoogle Scholar