Skip to main content Accessibility help
×
Home

Powder synthesis of barium titanate and barium orthotitanate via an ethylene glycol complex polymerization route

  • S. J. Lee (a1), M. D. Biegalski (a1) and W. M. Kriven (a1)

Abstract

Pure and reactive barium titanate (BaTiO3) and barium orthotitanate (Ba2TiO4) powders have been synthesized by an ethylene glycol (EG), polymerizationcomplexation route. The EG content affected the crystallization behavior and powder morphology. The BaTiO3powder, which had a particle size of approximately 100 nm, crystallized from amorphous to tetragonal phase on calcining at 700 °C for 1 h. Ball-milled BaTiO3 powder sintered to 97% relative density at 1200 °C after 2 h, with a grain size of approximately 200 nm. Ba2TiO4 powder required longer holding times or higher temperatures to be crystallized from the amorphous phase than did BaTiO3. In Ba2TiO4, the phase transformation between low-temperature monoclinic symmetry to high-temperature orthorhombic symmetry was observed by dilatometry and differential scanning calorimetry. A volume decrease of ∼0.5% accompanied the monoclinic-to-orthorhombic transformation on heating. The high-temperature orthorhombic phase could be retained down to room temperature y the addition of at least 6 wt% magnesia (MgO) stabilizer.

Copyright

References

Hide All
1.Moulson, A.J. and Herbert, J.M., Electroceramics (Chapman & Hall, London, 1990).
2.Kumazawa, H., Kagimoto, T., and Kawabata, A., J. Mater. Sci 31, 2599 (1996).
3.Yao, K., Zang, L., Yao, X., and Zhu, W., J. Mater. Sci. 32, 3659 (1997).
4.Arima, M., Kakihana, M., Nakamura, Y., Yashima, M., and Yoshimura, M., J. Am. Ceram. Soc. 79, 2847 (1996).
5.Godbole, P.D., Deshpande, S.B., Potdar, H.S., and Date, S.K., Mater. Lett. 12, 97 (1991).
6.Kim, S., Lee, M., Noh, T., and Lee, C., J. Mater. Sci. 31, 3643 (1996).
7.Rase, D.E. and Roy, R., J. Am. Ceram. Soc. 38, 108 (1955).
8.Ritter, J.J., Roth, R.S., and Blendell, J.E., J. Am. Ceram. Soc. 69, 155 (1986).
9.Bland, J.A., Acta. Cryst. 14, 875 (1961).
10.Todd, S.S. and Lorenson, R.E., J. Am. Chem. Soc. 74, 3764 (1953).
11.Nguyen, M.H., Masters thesis, University of Illinois at Urbana-Champaign, (1997).
12.Mazdiyasni, K.S., Dolloff, R.T., and Smith, J.S., J. Am. Ceram. Soc. 52, 523 (1969).
13.Alcock, J.R., Riley, F.L., D'Angeli, C., and Thomas, A.G., Br. Ceram. Trans. J. 90, 152 (1991).
14.Pechini, M.P., U.S. Patent No. 3 330 697 (1967).
15.Gülgün, M.A., Popoola, O.O., and Kriven, W.M., J. Am. Ceram. Soc. 77, 531 (1994).
16.Budd, D. and Payne, D.A., in Better Ceramics Through Chemistry, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 32, Elsevier Science Publishing, New York, 1984), p. 239.
17.Tai, L.W. and Lessing, P.A., J. Mater. Res. 7, 502 (1992).
18.Jonker, G.H. and Kwestroo, W., J. Am. Ceram. Soc. 41, 390 (1958).
19.Gülgün, M.A., Nguyen, M.H., and Kriven, W.M., J. Am. Ceram. Soc. 82, 556 (1999).
20.Nguyen, M.H., Lee, S.J., and Kriven, W.M., J. Mater. Res. (1999, in press)
21.Sun, Y.N., Sacks, M.D., and Williams, J.W., in Ceramic Transactions, Vol. 1, edited by Messing, G.L., Fuller, E.R. Jr, and Hausner, H. (The American Ceramic Society, Westerville, OH, 1988), pp. 538548.
22.Shin, W.K., Sacks, M.D., Scheiffle, G.W., and Williams, J.W., in Ceramic Transactions, Vol. 1, edited by Messing, G.L., Fuller, E.R. Jr, and Hausner, H. (The American Ceramic Society, Westerville, OH, 1988), pp. 549558.
23.Proust, C., Miot, C., and Husson, E., Ferroelectrics 186, 89 (1996).
24.Arend, H. and Kihlborg, L., J. Am. Ceram. Soc. 52, 63 (1969).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed