Skip to main content Accessibility help

Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices

  • Manisha Tyagi (a1), Monika Tomar (a2) and Vinay Gupta (a3)


The present work highlights the effect of postdeposition annealing (373–773 K) on the tunability of electrical conductivity of radio frequency sputtered NiOx thin films with both n-type and p-type behavior. The NiOx thin films were polycrystalline with preferred (200) orientation with high optical transmission. The as-grown NiOx thin film exhibits an n-type behavior with room temperature resistivity of 4.80 × 10−3 Ω-cm and majority carrier (electrons) concentration of about 3.90 × 1020 cm−3. Film annealed at 473 K was p-type having resistivity of 1.54 × 10−1 Ω-cm and majority carrier (hole) concentration of about 4.45 × 1018 cm−3. Hall effect and thermoelectric power measurements confirm a transition in electrical conduction from n-type to p-type with postdeposition annealing at 473 K. The observed tunability of electrical conductivity of NiOx thin film will pave way toward realization of p-n homojunction for short wave length optoelectronic device applications.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Fasaki, I., Giannoudakos, A., Stamataki, M., Kompitsas, M., György, E., Mihailescu, I.N., Roubani-Kalantzopoulou, F., Lagoyannis, A., and Harissopulos, S.: Nickel oxide thin films synthesized by reactive pulsed laser deposition: Characterization and application to hydrogen sensing. Appl. Phys. A 91, 487 (2008).
2.Krishnakumar, S.R., Liberati, M., Grazioli, C., Veronese, M., Turchini, S., Luches, P., Valeri, S., and Carbone, C.: Magnetic linear dichroism studies of in situ grown NiO thin films. J. Magn. Magn. Mater. 310, 8 (2007).
3.Liu, H., Zheng, W., Yan, X., and Feng, B.: Studies on electrochromic properties of nickel oxide thin films prepared by reactive sputtering. J. Alloys Compd. 462, 356 (2008).
4.Tyagi, M., Tomar, M., and Gupta, V.: Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal. Chim. Acta 726, 93 (2012).
5.Chen, X., Wu, N.J., Smith, L., and Ignatiev, A.: Thin-film heterostructure solid oxide fuel cells. Appl. Phys. Lett. 84, 2700 (2004).
6.Irwin, M.D., Buchholz, D.B., Hains, A.W., Chang, R.P.H., and Marks, T.J.: p-type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. PNAS 105(8), 2783 (2007).
7.Chan, I.M., Hsu, T.Y., and Hong, F.C.: Enhanced hole injections in organic light-emitting devices by depositing nickel oxide on indium tin oxide anode. Appl. Phys. Lett. 81, 1899 (2002).
8.Dutta, T., Gupta, P., Gupta, A., and Narayan, J.: High work function (p-type NiO1+x)/Zn0.95Ga0.05O heterostructures for transparent conducting oxides. J. Phys. D: Appl. Phys. 43, 105301 (2010).
9.Dutta, T., Gupta, P., Gupta, A., and Narayan, J.: Effect of Li doping in NiO thin films on its transparent and conducting properties and its application in heteroepitaxial p-n junctions. J. Appl. Phys. 108(8), 083715 (2010).
10.Alders, D., Voogt, F.C., Hibma, T., and Sawatzky, G.A.: Interface effects in the Ni 2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys. Rev. B 54(11), 7716 (1996).
11.Chen, X., Ruan, K., Wu, G., and Bao, D.: Tuning electrical properties of transparent p-NiO/n-MgZnO heterojunctions with band gap engineering of MgZnO. Appl. Phys. Lett. 93, 112112 (2008).
12.Long, H., Fang, G.J., Huang, H.H., Mo, X.M., Xia, W., Dong, B.Z., Meng, X.Q., and Zhao, X.Z.: Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes. Appl. Phys. Lett. 95(1), 013509 (2009).
13.Chu, S., Wang, G., Zhou, W., Lin, Y., Chernyak, L., Zhao, J., Kong, J., Li, L., Ren, J., and Liu, J.: Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6, 506 (2011).
14.Lu, M.P., Song, J., Lu, M.Y., Chen, M.T., Gao, Y., Chen, L.J., and Wang, Z.L.: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223 (2009).
15.Chen, M.T., Lu, M.P., Wu, Y.J., Song, J., Lee, C.Y., Lu, M.Y., Chang, Y.C., Chou, L.J., Wang, Z.L., and Chen, L.J.: Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett. 10, 4387 (2010).
16.Wu, M.S. and Yang, C.H.: Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition. Appl. Phys. Lett. 91, 033109 (2007).
17.Ryu, H.Y., Choi, G.P., Lee, W.S., and Park, J.S.: Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. J. Mater. Sci. Lett. 39, 4375 (2004).
18.Stamataki, M., Tsamakis, D., Brilis, N., Fasaki, I., Giannoudakos, A., and Kompitsas, M.: Hydrogen gas sensors based on PLD grown NiO thin film structures. Phys. Status Solidi A 205, 2064 (2008).
19.Reinert, F., Steiner, P., Hiifner, S., Schmitt, H., Fink, J., Knupfer, M., Sand, P., and Bertel, P.E.: Electron and hole doping in NiO. Z. Phys. B: Condens. Matter 97, 83 (1995).
20.Gupta, P., Dutta, T., Mal, S., and Narayan, J.: Controlled p-type to n-type conductivity transformation in NiO thin films by ultraviolet-laser irradiation. J. Appl. Phys. 111, 013706 (2012).
21.Sato, H., Minami, T., Takata, S., and Yamada, T.: Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27 (1993).
22.Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading, MA, 1978), p. 102.
23.Maniv, S., Westwood, W.D., and Colombini, E.: Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers. J. Vac. Sci. Technol., A 20, 162 (1982).
24.Chen, H.L., Lu, Y.M., and Hwang, W.S.: Characterization of sputtered NiO thin films. Surf. Coat. Technol. 198, 138 (2005).
25.Puspharajah, P., Radhakrishna, S., and Aroif, A.K.: Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique. J. Mater. Sci. 32, 3001 (1997).
26.Subrahamanyam, N.A.: A Textbook of Optics, 9th ed. (Brj Laboratory, India, 1977).
27.Mendoza-Galván, A., Vidales-Hurtado, M.A., and López-Beltrán, A.M.: Comparison of the optical and structural properties of nickel oxide-based thin films obtained by chemical bath and sputtering. Thin Solid Films 517, 3115 (2009).
28.Moss, T.S., Burrell, G.J., and Ellis, B.: Semiconductor Opto-Electronics (Wiley, New York, 1973).
29.Nakahata, K., Miida, A., Kamiya, T., Fortmann, C.M., and Shimizu, I.: Carrier transport, structure and orientation in polycrystalline silicon on glass. Thin Solid Films 337, 45 (1999).
30.Cutler, M., Leavy, J.F., and Fitzpatrick, R.L.: Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143 (1964).
31.Li, L., Fang, L., Zhou, X.J., Liu, Z.Y., Zhao, L., and Jiang, S.: X-ray photoelectron spectroscopy study and thermoelectric properties of Al-doped ZnO thin films. J. Electron. Spectrosc. Relat. Phenom. 173, 7 (2009).
32.Tyagi, M., Tomar, M., and Gupta, V.: P-N junction of NiO thin film for photonic devices. IEEE Electron Device Lett 34, 1 (2013).
33.Chowdhuri, A., Singh, S.K., Sreenivas, K., and Gupta, V.: Contribution of adsorbed oxygen and interfacial space charge for enhanced response of SnO2 sensors having CuO catalyst for H2S gas. Sens. Actuators, B 145, 155 (2010).

Related content

Powered by UNSILO

Postdeposition annealing of NiOx thin films: A transition from n-type to p-type conductivity for short wave length optoelectronic devices

  • Manisha Tyagi (a1), Monika Tomar (a2) and Vinay Gupta (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.