Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-13T15:47:51.058Z Has data issue: false hasContentIssue false

Possible behavior of a diamond (111) surface in methane/hydrogen systems

Published online by Cambridge University Press:  31 January 2011

Steven M. Valone
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Mitchell Trkula
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Joseph R. Laia
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

A combined numerical and experimental investigation into the behavior of diamond (111) surfaces in plasma CVD reactors is presented. Numerically, semiempirical molecular orbital methods are used as a model of diamond (111) surfaces represented by a 20-atom carbon cluster plus surface species. The abstraction of hydrogen atoms by gas-phase hydrogen atoms, the coverage dependence of the heat of formation for submonolayers of CH3 and C2H groups coadsorbed with H, and the energy change for abstraction of H atoms from the surface by various radicals in the gas phase are examined. No barrier to abstraction is found, steric effects in achieving clusters of CH3 groups are large, and C2H and atomic oxygen are found to be the most energetically favored for removal of adsorbed H. Experimentally, relative concentrations of atomic H in the near-surface region as a function of added O2 mole fraction were measured. A weak dependence on O2 concentration is observed, but does not appear to be significant enough to account for observed changes in growth rate. This suggests that other radical species be investigated for their contribution to diamond film growth.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Frenklach, M., J. Appl. Phys. 65, 5142 (1989).CrossRefGoogle Scholar
2Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
3Pate, B. B., Surf. Sci. 165, 83 (1986).CrossRefGoogle Scholar
4Vanderbilt, D. and Louie, S. G., Phys. Rev. B 29, 7099 (1984).CrossRefGoogle Scholar
5Pandey, K. C., Phys. Rev. B 25, 4338 (1982).CrossRefGoogle Scholar
6Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986); Jpn. J. Appl. Phys. 26, L527 (1987).CrossRefGoogle Scholar
7Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
8Bingham, R. C., Dewar, M. J. S., and Lo, D. H., J. Am. Chem. Soc. 97, 1285 (1975).CrossRefGoogle Scholar
9Dewar, M. J. S. and Thiel, W., J. Am. Chem. Soc. 99, 4907 (1977).CrossRefGoogle Scholar
10Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., and Stewart, J. P. P., J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
11Dewar, M. J. S. and Storch, D. M., J. Am. Chem. Soc. 107, 3898 (1977).CrossRefGoogle Scholar
12Roothaan, C.C. J., Rev. Mod. Phys. 23, 69 (1951).CrossRefGoogle Scholar
13Hall, G. G., Proc. R. Soc. London, Ser. A 205, 541 (1951). “Quantum Chemistry Program Exchange (Chemistry Department, Indiana University), QCPE program 506.Google Scholar
15Coburn, J.W. and Chen, M., J. Appl. Phys. 51, 3134 (1980).CrossRefGoogle Scholar
16Harris, S. J. and Weiner, A. M., “Methyl and H Atom Concentrations during Diamond Growth,” submitted; Appl. Phys. Lett. 55, 2179 (1989).CrossRefGoogle Scholar
17Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65, 3448 (1989);CrossRefGoogle Scholar
also Chang, C-P., Flamm, D.L., Ibbotson, D.E., and Mucha, J. A., J. Appl. Phys. 63, 1744 (1988).CrossRefGoogle Scholar
18Herzberg, G., Atomic Spectra and Atomic Structure (Dover Publications, New York, 1944), Chap. IV.Google Scholar
19Matsumoto, O. and Katagiri, T., Thin Solid Films 146, 283 (1987).CrossRefGoogle Scholar
20Celii, F. G. and Butler, J. E., Appl. Phys. Lett. 54, 1031 (1989).CrossRefGoogle Scholar
21Harris, S. J., Weiner, A.M., and Perry, T. A., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
22Harris, S. J., J. Appl. Phys. 65, 3044 (1989).CrossRefGoogle Scholar
23Celii, F.G., Pehrsson, P.E., Wang, H-t., and Butler, J.E., Appl. Phys. Lett. 52, 2043 (1988).CrossRefGoogle Scholar
24Chen, C-F., Huang, Y. C., Hosomi, S., and Yoshida, I., Mater. Res. Bull. XXIV, 87 (1989).CrossRefGoogle Scholar
25Chauhan, S. P., Angus, J. C., and Gardner, N. C., J. Appl. Phys. 47, 4746 (1976).CrossRefGoogle Scholar
26Derjaguin, B.V. and Fedoseev, D.V., Russian Chem. Rev. 53, 435 (1984).Google Scholar