Skip to main content Accessibility help

Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses

  • Roman Golovchak (a1), Shaojie Wang (a1), Himanshu Jain (a1) and Adam Ingram (a2)


Positron annihilation lifetime measurements are performed for sol–gel-derived 70 mol% SiO2–30 mol% CaO bioactive glass. Strong positronium formation processes are shown to be an inherent feature for these kinds of materials. Observed orthopositronium (o-Ps) lifetimes show a three-modal distribution with lifetime values weighed at ∼2, ∼18, and ∼70 ns. The exposure of the investigated sol–gel-derived bioactive glasses to water vapor significantly modifies o-Ps lifetime distribution due to the penetration of water molecules into the nanopores, indicating high ratio of their interconnectivity. Classic Tao–Eldrup equation is used to relate the o-Ps lifetimes with the size of nanopores, whose distribution is verified by nitrogen adsorption porosimetry.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Li, R., Clark, A.E., and Hench, L.L.: An investigation of bioactive glass powders by sol-gel processing. J. Appl. Biomater. 2, 231 (1991).
2.Jones, J.R., Tsigkou, O., Coates, E.E., Stevens, M.M., Polak, J.M., and Hench, L.L.: Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials 28, 1653 (2007).
3.Marques, A.C., Almeida, R., Thiema, A., Wang, S., Falk, M.M., and Jain, H.: Sol-gel-derived glass scaffold with high pore interconnectivity and enhanced bioactivity. J. Mater. Res. 24, 3495 (2009).
4.Wang, S., Falk, M.M., Rashad, A., Saad, M.M., Marques, A.C., Almeida, R.M., Marei, M.K., and Jain, H.: Evaluation of 3D nano/macroporous bioactive glass scaffold for hard tissue engineering. J. Mater. Sci. - Mater. Med. 22, 1195 (2011).
5.Sepulveda, P., Jones, J.R., and Hench, L.L.: Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340 (2002).
6.Zhang, D., Jain, H., Hupa, M., and Hupa, L.: In vitro degradation and bioactivity of tailored amorphous multi porous (TAMP) scaffold structure. J. Am. Ceram. Soc. (2012, in press).
7.Karageorgiou, V. and Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474 (2005).
8.Nakanishi, K.: Pore structure control of silica gels based on phase separation. J. Porous Mater. 4, 67 (1997).
9.Yachi, A., Takahashi, R., Sato, S., Sodesawa, T., Oguma, K., Matsutani, K., and Mikami, N.: Silica gel with continuous macropores prepared from water glass in the presence of poly(acrylic acid). J. Non-Cryst. Solids 351, 331 (2005).
10.Jones, J.R., Ehrenfried, L.M., and Hench, L.L.: Optimizing bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964 (2006).
11.Maekawa, H., Esquena, J., Bishop, S., Solans, C., and Chmelka, B.F.: Meso/macroporous inorganic oxide monoliths from polymer, foams. Adv. Mater. 15, 591 (2003).
12.Liang, W. and Russel, C.: Porous glass scaffolds by a salt sintering process. J. Mater. Sci. 41, 3787 (2006).
13.Moawad, H.M. and Jain, H.: Fabrication ofnano/macro porous glass-ceramic bioscaffold with a water-soluble pore former. J. Mater. Sci. - Mater. Med. 23, 307 (2012).
14.Yun, H., Kim, S., and Hyeon, Y.: Design and preparation of bioactive glasses with hierarchical pore networks. Chem. Commun. 21, 2139 (2007).
15.Marques, A.C., Jain, H., and Almeida, R.M.: Sol-gel derived nano/macroporous scaffolds. Phys. Chem. Glasses-Eur. J. Glass Sci. Technol., Part B 48, 65 (2007).
16.Webb, P.A. and Orr, C.: Analytical Methods in Fine Particle Technology (Micromeritics Instrument Corporation, Norcross, 1997).
17.Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).
18.Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).
19.Rice, R.W.: Evaluation of extension of physical property-porosity models based on minimum solid area. J. Mater. Sci. 31, 102 (1996).
20.Ondracek, G.: Human, medicine and materials: Biomaterials. Keram. Z. 40, 169 (1988).
21.Krause-Rehberg, R. and Leipner, H.: Positron Annihilation in Semiconductors (Springer, Heidelberg, 1999).
22.Jean, Y.C., Mallon, P.E., and Schrader, D.M.: Principles and Application of Positron and Positronium Chemistry (World Scientific, Singapore, 2003).
23.Mogensen, O.E.: Positron Annihilation in Chemistry (Springer, Berlin, 1995).
24.Nakanishi, H., Jean, Y.C., Schrader, D.M., and Jean, Y.C.: In Positron and Positronium Chemistry (Elsevier, Amsterdam, 1998).
25.Dlubek, G., Sen Gupta, A., Pionteck, J., Hassler, R., Krause-Rehberg, R., Kaspar, H., and Lochhaas, K.H.: High-pressure dependence of the free volume in fluoroelastomers from positron lifetime and PVT experiments. Polymer 46, 6075 (2005).
26.Shpotyuk, O. and Filipecki, J.: Free volume in Vitreous Chalcogenide Semiconductors: Possibilities of Positron Annihilation Lifetime Study (WWSzP, Czestochowa, 2003). ISBN 83-7098-984-5.
27.Vueva, Y., Gama, A., Teixeira, A.V., Almeida, R.M., Wang, S., Falk, M.M., and Jain, H.: Monolithic glass scaffolds with dual porosity prepared by polymer-induced phase separation and sol–gel. J. Am. Ceram. Soc. 93, 1945 (2010).
28.Kansy, J.: Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res., Sect. A 374, 235 (1996).
29.Tao, S.J.: Positronium annihilation in molecular substance. J. Chem. Phys. 56, 5499 (1972).
30.Eldrup, M., Lightbody, D., and Sherwood, J.N.: The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys. 63, 51 (1981).
31.Goworek, T., Ciesieslski, K., Jasinska, B., and Wawryszczuk, J.: Positronium states in the pores of silica gel. Chem. Phys. 230, 305 (1998).
32.Djourelov, N., Suzuki, T., Shantarovich, V., and Kondo, K.: Positronium formation in sol-gel-prepared silica-based glasses: Temperature and positron-irradiation effect. Radiat. Phys. Chem. 72, 723 (2005).
33.Misheva, M., Djourelov, N., Margaca, F.M.A., and Miranda Salvado, I.M.: Positronium decay of zirconia-silica sol-gels. J. Non-Cryst. Solids 272, 209 (2000).
34.Klym, H., Ingram, A., Shpotyuk, O., Filipecki, J., and Hadzaman, I.: Extended positron-trapping defects in insulating MgAl2O4 spinel-type ceramics. Phys. Status Solidi C 4, 715 (2007).
35.Dutta, D., Chatterjee, S., Pujari, K.T., and Ganguly, B.N.: Pore structure of silica gel: A comparative study through BET and PALS. Chem. Phys. 312, 319 (2005).
36.Gidley, D.W., Frieze, W.E., Dull, T.L., Yee, A.F., Ryen, E.T., and Ho, H-M.: Positronium annihilation in mesoporous thin films. Phys. Rev. B 60, R5157 (1999).
37.Varshneya, A.K.: Fundamentals of Inorganic Glasses, 2nd ed. (Society of Glass Technology, Sheffield, UK, 2006).
38.Marques, A.C., Jain, H., Kiely, C., Song, K., Kiely, C.J., and Almeida, R.M.: Nano/macroporous monolithic scaffolds prepared by the sol–gel method. J. Sol-Gel Sci. Technol. 51, 42 (2009).
39.Hench, L.L. and West, J.K.: The sol-gel process. Chem. Rev. 90, 33 (1990).
40.Magalhaes, W.F., Abbe, J.C., and Duplatre, G.: Solvent and temperature effects on positronium annihilation parameters and on its quenching reactions with the free radical HTEMPO. Struct. Chem. 2, 399 (1991).


Positron annihilation lifetime spectroscopy of nano/macroporous bioactive glasses

  • Roman Golovchak (a1), Shaojie Wang (a1), Himanshu Jain (a1) and Adam Ingram (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed