Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T12:46:41.785Z Has data issue: false hasContentIssue false

Porous silica derived from chitosan-containing hybrid composites

Published online by Cambridge University Press:  31 January 2011

J. Retuert
Affiliation:
Departamento de Quimica e Ingenieria Quimica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales (CIMAT), Av. Beaucheff 850, Casilla 2777, Santiago, Chile
R. Quijada
Affiliation:
Departamento de Quimica e Ingenieria Quimica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales (CIMAT), Av. Beaucheff 850, Casilla 2777, Santiago, Chile
V. Arias
Affiliation:
Departamento de Quimica e Ingenieria Quimica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales (CIMAT), Av. Beaucheff 850, Casilla 2777, Santiago, Chile
M. Yazdani-Pedram
Affiliation:
Departamento de Quimica Orgánica y Físico Quimica, Facultad de Ciencias Químicas y Farmacéuticas, Olivos 1007, Casillo 233, Santiago, Chile and Centro para la Investigación Interdisciplinaria Avanzada en Ciencia de los Materiales (CIMAT), Av. Beaucheff 850, Casilla 2777, Santiago, Chile
Get access

Abstract

In this paper, we report the preparation by the sol-gel technique of organic–inorganic hybrid composites containing the biopolymer chitosan incorporated in a siloxane-based inorganic network. The hybrid xerogels were transformed into porous silica particles by elimination of the organic phase. Surface characteristics of the silica samples can be easily tailored. In this way Brunauer–Emmett–Teller areas, pore volume, and pore diameter of the prepared silica can be predetermined within a wide range. Morphology of the particles at longer length scales can be designed to obtain either irregularly shaped particles with layered morphology or spherical particles. The results are explained on the basis of the cationic polyelectrolytic properties of chitosan, which allows easy association with siloxane oligomers, the precursors of silica in forming hybrid nanocomposites.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ward, D.A. and Ko, E.I., Ind. Eng. Chem. Res. 34, 421 (1995).CrossRefGoogle Scholar
Loy, D.A.. MRS Bull. 26(5), 364 (2001).CrossRefGoogle Scholar
Stucky, G.D., Zhao, D., Yang, P., Lukens, W., Melosh, N., and Chmelka, B.F., in Proc. Silica 98 A, edited by Papirer, E., Vidal, A., and Haidor, B., (Universite´ de Haute Alsace, Mulhouse, France, September 1–4, 1998, p. 916.Google Scholar
Göltner, C.G., Berton, B., Krämer, E., and Antonietti, M., Adv. Mater. 11, 395 (1999).3.0.CO;2-E>CrossRefGoogle Scholar
Caruso, R.A. and Schattka, J.H., Adv. Mater. 12, 1921 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
Chujo, Y. and Saegusa, T., Adv. Polym. Sci. 100, 11 (1992).CrossRefGoogle Scholar
Zehl, G., Bischoff, S., Mitzukami, F., Isutzu, H., Bartoszek, M., Jancke, H., Luecke, B., and Maeda, K.J., Mater. Chem. 5, 1893 (1995).CrossRefGoogle Scholar
Kure, S., Ihara, E., Chujo, Y., Saegusa, T., Yazawa, T., and Eguchi, K., Polym. Prep. Jpn. 39, 1681 (1990).Google Scholar
Tomalia, D.A., Angew. Chem., Int. Ed. Engl. 29, 138 (1990).CrossRefGoogle Scholar
Nakanishi, K., Takahashi, R., and Soga, N.J., J. Non-Cryst. Solids 147 & 148, 291 (1992).CrossRefGoogle Scholar
Wen, J., Dhanpani, B., Oyama, S.T., and Wilkes, G.L., Chem. Mater. 9, 1968 (1997).Google Scholar
Corriu, R.J.P., LeStrat, V., and Delord, P., New J. Chem. 23, 531 (1999).Google Scholar
Takahashi, R., Nakanishi, K., and Soga, N., J. Non-Cryst. Solids 66, 189 (1995).Google Scholar
Lu, Y.F., Cao, G.Z., Kale, R.P., Prabakar, S., Lopez, G.P., Brinker, C.J., Chem. Mater. 11, 1223 (1999).CrossRefGoogle Scholar
Fuentes, S., Retuert, J., Gonzalez, G., and Ruiz-Hitzky, E., Int. J. Polym. Mater. 35, 61 (1997).CrossRefGoogle Scholar
Retuert, J., Nuñez, A., Yazdani-Pedram, M., and Martínez, F., Macromol. Rapid Commun. 18, 163 (1997).CrossRefGoogle Scholar
Retuert, J., Quijada, R., and Arias, V., Chem. Mater. 10, 3923 (1998).CrossRefGoogle Scholar
Fuentes, S., Retuert, P.J., Ubilla, A., Fernández, J., and González, G., Biomacromolecules, 2, 239 (2000).Google Scholar
Robert, G. and Domszy, J., Int. J. Biol. Macromol. 4, 374 (1994).Google Scholar
Rinaudo, M., Dung, P. Le, Grey, C., and Milas, M., Int. J. Biol. Macromol. 14, 121 (1992).CrossRefGoogle Scholar
Pope, E.J.A. and Mackenzie, J.D., J. Non-Cryst. Solids 101, 198 (1998).CrossRefGoogle Scholar
Brinker, C.J. and Scherer, G., The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).Google Scholar
Samuels, R.J., J. Polym. Sci. Polym. Phys. 19, 1081 (1981).CrossRefGoogle Scholar
Urbanczyk, G.W. and Lipp, B.-Symmonowicz, J. Appl. Polym. Sci. 51, 2191 (1994).CrossRefGoogle Scholar
Retuert, P.J., Quijada, R., and Lafourcade, C., in Organic/Inorganic Hybrid Materials-2000, edited by Laine, R.M., Sanchez, C., Brinker, C.J., and Giannelis, E. (Mater. Res. Soc. Symp. Proc. 628, Warrendale, PA, 2000).Google Scholar
Stöber, W., Fink, A., and Bohn, E.J., Colloid Interface Sci., 26, 62 (1968).CrossRefGoogle Scholar