Skip to main content Accessibility help

Porosity scaling strategies for low-k films

  • David J. Michalak (a1), James M. Blackwell (a1), Jessica M. Torres (a1), Arkaprabha Sengupta (a2), Lauren E. Kreno (a3), James S. Clarke (a3) and Daniel Pantuso (a4)...


Reducing the delay of backend interconnects is critical in delivering improved performance in next generation computer chips. One option is to implement interlayer dielectric (ILD) materials with increasingly lower dielectric constant (k) values. Despite industry need, there has been a recent decrease in study and production of these materials in academia and business communities. We have generated a backbone and porogen system that allows us to control porosity from 0 to 60% volume, achieve k-values from 3.4 to 1.6, maintain high chemical stability to various wet cleans, and deliver uniquely high mechanical strength at a given porosity. Finite element modeling and experimental results demonstrate that further improvements can be achieved through control of the pore volume into an ordered network. With hopes to spur more materials development, this paper discusses some molecular design and nanoscale hierarchical principles relevant to making next generation low-k ILD materials.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
2.Moore, G.E.: No exponential is forever: But “Forever” can be delayed![semiconductor industry]. In IEEE International Solid-State Circuits Conference Digest of Technical Papers, IEEE: 2003; p. 20.
3.Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82 (1998).
4.Volksen, W., Miller, R.D., and Dubois, G.: Low dielectric constant materials. Chem. Rev. 110(1), 56 (2010).
5.Husain, A.: Models for interconnect capacitance extraction. In International Symposium on Quality Electronic Design, IEEE: 2001; p. 167.
6.Maex, K., Baklanov, M., Shamiryan, D., Brongersma, S., and Yanovitskaya, Z.: Low dielectric constant materials for microelectronics. J. Appl. Phys. 93(11), 8793 (2003).
7.Lionti, K., Volksen, W., Magbitang, T., Darnon, M., and Dubois, G.: Toward successful integration of porous low-k materials: Strategies addressing plasma damage. ECS J. Solid State Sci. Technol. 4(1), N3071 (2015).
8.Baklanov, M., Ho, P.S., and Zschech, E.: Advanced Interconnects for ULSI Technology (Chicester: John Wiley & Sons, 2012).
9.Grill, A., Patel, V., Rodbell, K., Huang, E., Baklanov, M., Mogilnikov, K., Toney, M., and Kim, H-C.: Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study. J. Appl. Phys. 94(5), 3427 (2003).
10.Choy, T.C.: Effective Medium Theory: Principles and Applications (New York: Oxford University Press, 1999).
11.King, S., French, M., Bielefeld, J., and Lanford, W.: Fourier transform infrared spectroscopy investigation of chemical bonding in low-k a-SiC: H thin films. J. Non-Cryst. Solids 357(15), 2970 (2011).
12.Mu, D., Liu, Z-S., Huang, C., and Djilali, N.: Determination of the effective diffusion coefficient in porous media including Knudsen effects. Microfluid. Nanofluid. 4(3), 257 (2008).
13.Müller, H-P., Kimmich, R., and Weis, J.: NMR flow velocity mapping in random percolation model objects: Evidence for a power-law dependence of the volume-averaged velocity on the probe-volume radius. Phys. Rev. E 54(5), 5278 (1996).
14.Sahimi, M.: Applications of Percolation Theory (Boca Raton: CRC Press, Taylor & Francis Group, 1994).
15.Petkov, M.P., Weber, M.H., Lynn, K.G., and Rodbell, K.P.: Probing capped and uncapped mesoporous low-dielectric constant films using positron annihilation lifetime spectroscopy. Appl. Phys. Lett. 77(16), 2470 (2000).
16.Zhou, W., Bailey, S., Sooryakumar, R., King, S., Xu, G., Mays, E., Ege, C., and Bielefeld, J.: Elastic properties of porous low-k dielectric nano-films. J. Appl. Phys. 110(4), 043520 (2011).
17.Kim, H.: The application of atomic layer deposition for metallization of 65 nm and beyond. Surf. Coat. Technol. 200(10), 3104 (2006).
18.Baklanov, M.R., de Marneffe, J-F., Shamiryan, D., Urbanowicz, A.M., Shi, H., Rakhimova, T.V., Huang, H., and Ho, P.S.: Plasma processing of low-k dielectrics. J. Appl. Phys. 113(4), 041101 (2013).
19.Goldman, M., Graves, D., Antonelli, G., Behera, S., and Kelber, J.: Oxygen radical and plasma damage of low-k organosilicate glass materials: Diffusion-controlled mechanism for carbon depletion. J. Appl. Phys. 106(1), 13311 (2009).
20.Richard, O., Iacopi, F., Bender, H., and Beyer, G.: Sidewall damage in silica-based low-k material induced by different patterning plasma processes studied by energy filtered and analytical scanning TEM. Microelectron. Eng. 84(3), 517 (2007).
21.Kunnen, E., Barkema, G., Maes, C., Shamiryan, D., Urbanowicz, A., Struyf, H., and Baklanov, M.: Integrated diffusion–recombination model for describing the logarithmic time dependence of plasma damage in porous low-k materials. Microelectron. Eng. 88(5), 631 (2011).
22.Worsley, M.A., Bent, S.F., Gates, S.M., Fuller, N.C.M., Volksen, W., Steen, M., and Dalton, T.: Effect of plasma interactions with low-κ films as a function of porosity, plasma chemistry, and temperature. J. Vac. Sci. Technol., B 23(2), 395 (2005).
23.Louveau, O., Bourlot, C., Marfoure, A., Kalinovski, I., Su, J., Hills, G., and Louis, D.: Dry ashing process evaluation for porous ULK films. Microelectron. Eng. 7374, 351 (2004).
24.Singh, K.J.: Unique size-dependent challenges for BEOL cleans in the patterning of sub-20 nm features. In Solid State Phenomena, Vol. 195, Mertens, P., Meuris, M., and Heyns, M., eds.; Zurich: Trans Tech Publications, 2013; p. 103.
25.Chawla, J., Singh, K., Myers, A., Michalak, D., Schenker, R., Jezewski, C., Krist, B., Gstrein, F., Indukuri, T., and Yoo, H.: Patterning challenges in the fabrication of 12 nm half-pitch dual damascene copper ultra low-k interconnects. In SPIE Advanced Lithography, International Society for Optics and Photonics: 2014; p. 905404.
26.Darnon, M., Chevolleau, T., Joubert, O., Maitrejean, S., Barbe, J.C., and Torres, J.: Undulation of sub-100nm porous dielectric structures: A mechanical analysis. Appl. Phys. Lett. 91(19), 194103 (2007).
27.Stan, G., Ciobanu, C.V., Levin, I., Yoo, H.J., Myers, A., Singh, K.J., Jezewski, C., Miner, B., and King, S.: Nanoscale buckling of ultrathin low-k dielectric lines during hard-mask patterning. Nano Lett. 15(6), 38453850 (2015).
28.Chawla, J.S., Chebiam, R., Akolkar, R., Allen, G., Carver, C.T., Clarke, J.S., Gstrein, F., Harmes, M., Indukuri, T., Jezewski, C., Krist, B., Lang, H., Myers, A., Schenker, R., Singh, K.J., Turkot, R., and Yoo, H.J.: Demonstration of a 12 nm-half-pitch copper ultralow-k interconnect process. In IEEE International Interconnect Technology Conference (IITC), IEEE: 2013; p. 1.
29.Hamioud, K., Arnal, V., Farcy, A., Jousseaume, V., Zenasni, A., Icard, B., Pradelles, J., Manakli, S., Brun, P., and Imbert, G.: 32 nm node BEOL integration with an extreme low-k porous SiOCH dielectric k = 2.3. Microelectron. Eng. 87(3), 316 (2010).
30.Fayolle, M., Passemard, G., Louveau, O., Fusalba, F., and Cluzel, J.: Challenges of back end of the line for sub 65 nm generation. Microelectron. Eng. 70(2–4), 255 (2003).
31.Rodriguez, O.R., Gill, W.N., Plawsky, J.L., Tsui, T.Y., and Grunow, S.: Study of Cu diffusion in porous dielectrics using secondary-ion-mass spectrometry. J. Appl. Phys. 98(12), 123514 (2005).
32.Fayolle, M., Jousseaume, V., Assous, M., Tabouret, E., Le Cornec, C., Haumesser, P.H., Leduc, P., Feldis, H., Louveau, O., Passemard, G., and Fusalba, F.: Cu/ULK integration using a post integration porogen removal approach. In Proceedings of the IEEE 2004 International Interconnect Technology Conference, IEEE: 2004; p. 208.
33.Frot, T., Volksen, W., Purushothaman, S., Bruce, R., and Dubois, G.: Application of the protection/deprotection strategy to the science of porous materials. Adv. Mater. 23(25), 2828 (2011).
34.Frot, T., Volksen, W., Purushothaman, S., Bruce, R.L., Magbitang, T., Miller, D.C., Deline, V.R., and Dubois, G.: Post porosity plasma protection: Scaling of efficiency with porosity. Adv. Funct. Mater. 22(14), 3043 (2012).
35.Zhang, L., Ljazouli, R., Lefaucheux, P., Tillocher, T., Dussart, R., Mankelevich, Y.A., de Marneffe, J-F., de Gendt, S., and Baklanov, M.R.: Low damage cryogenic etching of porous organosilicate low-k materials using SF6/O2/SiF4. ECS J. Solid State Sci. Technol. 2(6), N131 (2013).
36.Kayaba, Y., Tanaka, H., Suzuki, T., Kohmura, K., and Ono, S.S.: Selective formation of an ultra-thin pore seal on mesorporous low-k for a copper dual damascene structure. In IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), IEEE: 2014; p. 261.
37.Jiang, Y-B., Liu, N., Gerung, H., Cecchi, J.L., and Brinker, C.J.: Nanometer-thick conformal pore sealing of self-assembled mesoporous silica by plasma-assisted atomic layer deposition. J. Am. Chem. Soc. 128(34), 11018 (2006).
38.Moon, B.K., Iijima, T., Malhotra, S., Simon, A., Shaw, T., Ryan, T., Labelle, C., Fuller, N., Bolom, T., Dunn, D., Flaitz, P., Mehta, S., Inoue, K., and McGahay, V.: Integration of ALD-TaN Liners on nanoporous dielectrics. MRS Online Proc. Libr. 863, 16 (2005).
39.Puyrenier, W., Rouessac, V., Broussous, L., Rébiscoul, D., and Ayral, A.: Effect of plasma treatments on a porous low-k material—Study of pore sealing. Microporous Mesoporous Mater. 106(1–3), 40 (2007).
40.Fu, L., Su, M., Kuechenmeister, F., and Huang, W.: Chip package interaction (CPI) reliability of Cu/low-k/ultra-low-k interconnect. In 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, IEEE: 2009; p. 691.
41.Mosig, K., Jacobs, T., Brennan, K., Rasco, M., Wolf, J., and Augur, R.: Integration challenges of porous ultra low-k spin-on dielectrics. Microelectron. Eng. 64(1–4), 11 (2002).
42.Grill, A.: Plasma enhanced chemical vapor deposited SiCOH dielectrics: From low-k to extreme low-k interconnect materials. J. Appl. Phys. 93(3), 1785 (2003).
43.Jousseaume, V., Rolland, G., Babonneau, D., and Simon, J.P.: Influence of polymer porogens on the porosity and mechanical properties of spin coated ultra low k dielectrics. Thin Solid Films 517(15), 4413 (2009).
44.Padovani, A.M., Rhodes, L., Allen, S.A.B., and Kohl, P.A.: Chemically bonded porogens in methylsilsesquioxane I. Structure and bonding. J. Electrochem. Soc. 149(12), F161 (2002).
45.Volksen, W., Magbitang, T.P., Miller, R.D., Purushothaman, S., Cohen, S.A., Nakagawa, H., Nobe, Y., Kokubo, T., and Dubois, G.J.: A manufacturing grade, porous oxycarbosilane spin-on dielectric candidate with K ≤ 2.0. J. Electrochem. Soc. 158(7), G155 (2011).
46.Favennec, L., Jousseaume, V., Rouessac, V., Fusalba, F., Durand, J., and Passemard, G.: Porous extreme low κ (ELκ) dielectrics using a PECVD porogen approach. Mater. Sci. Semicond. Process. 7(4–6), 277 (2004).
47.Urbanowicz, A.M., Vanstreels, K., Verdonck, P., Shamiryan, D., De Gendt, S., and Baklanov, M.R.: Improving mechanical robustness of ultralow-k SiOCH plasma enhanced chemical vapor deposition glasses by controlled porogen decomposition prior to UV-hardening. J. Appl. Phys. 107(10), 104122 (2010).
48.Seino, M., Wang, W., Lofgreen, J.E., Puzzo, D.P., Manabe, T., and Ozin, G.A.: Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J. Am. Chem. Soc. 133(45), 18082 (2011).
49.Hatton, B., Landskron, K., Whitnall, W., Perovic, D., and Ozin, G.A.: Past, present, and future of periodic mesoporous organosilicas—The PMOs. Acc. Chem. Res. 38(4), 305 (2005).
50.Marsik, P., Verdonck, P., De Roest, D., and Baklanov, M.R.: Porogen residues detection in optical properties of low-k dielectrics cured by ultraviolet radiation. Thin Solid Films 518(15), 4266 (2010).
51.Baklanov, M.R., Zhao, L., Besien, E.V., and Pantouvaki, M.: Effect of porogen residue on electrical characteristics of ultra low-k materials. Microelectron. Eng. 88(6), 990 (2011).
52.Urbanowicz, A.M., Vanstreels, K., Shamiryan, D., De Gendt, S., and Baklanov, M.R.: Effect of porogen residue on chemical, optical, and mechanical properties of CVD SiCOH low-k materials. Electrochem. Solid-State Lett. 12(8), H292 (2009).
53.Verdonck, P., De Roest, D., Kaneko, S., Caluwaerts, R., Tsuji, N., Matsushita, K., Kemeling, N., Travaly, Y., Sprey, H., Schaekers, M., and Beyer, G.: Characterization and optimization of porogen-based PECVD deposited extreme low-k materials as a function of UV-cure time. Surf. Coat. Technol. 201(22–23), 9264 (2007).
54.Zenasni, A., Jousseaume, V., Holliger, P., Favennec, L., Gourhant, O., Maury, P., and Gerbaud, G.: The role of ultraviolet radiation during ultralow k films curing: Strengthening mechanisms and sacrificial porogen removal. J. Appl. Phys. 102(9), 094107 (2007).
55.Sinha, H., Antonelli, G.A., Jiang, G., Nishi, Y., and Shohet, J.L.: Effects of vacuum ultraviolet radiation on deposited and ultraviolet-cured low-k porous organosilicate glass. J. Vac. Sci. Technol., A. 29(3), 030602 (2011).
56.Mickler, E., Ching-Te, L., Krishnan, A.T., Changming, J., and Manoj, J.: A charge damage study using an electron beam low k treatment. In Proceedings of the IEEE 2004 International Interconnect Technology Conference, IEEE: 2004; p. 190.
57.Kloster, G., Scherban, T., Xu, G., Blaine, J., Sun, B., and Zhou, Y.: Porosity effects on low-k dielectric film strength and interfacial adhesion. In Proceedings of the IEEE 2002 International Interconnect Technology Conference, IEEE: 2002; p. 242.
58.Yoda, T., Fujita, K., Miyajima, H., Nakata, R., Miyashita, N., and Hayasaka, N.: Properties of high-performance porous SiOC low-k film fabricated using electron-beam curing. Jpn. J. Appl. Phys. 44(6R), 3872 (2005).
59.Owada, T., Ohara, N., Watatani, H., Kouno, T., Kudo, H., Ochimizu, H., Sakoda, T., Asami, N., Ohkura, Y., Fukuyama, S., Tsukune, A., Nakaishi, M., Nakamura, T., Nara, Y., and Kase, M.: Advanced BEOL integration using porous low-k (k=2.25) material with charge damage-less electron beam cure technique. In IEEE International Interconnect Technology Conference, IEEE: 2009; p. 149.
60.Dubois, G., Volksen, W., Magbitang, T., Sherwood, M., Miller, R., Gage, D., and Dauskardt, R.: Superior mechanical properties of dense and porous organic/inorganic hybrid thin films. J. Sol-Gel Sci. Technol. 48(1–2), 187 (2008).
61.Min, S-K., Moon, B., Kim, H., and Rhee, H-W.: Cyclodextrin-based reactive porogen for nanoporous ultra-low dielectrics. Curr. Appl. Phys. 11(1), S313 (2011).
62.Yim, J.H., Seon, J.B., Jeong, H.D., Pu, L.S., Baklanov, M.R., and Gidley, D.W.: Morphological control of nanoporous films by the use of functionalized cyclodextrins as porogens. Adv. Funct. Mater. 14(3), 277 (2004).
63.Baklanov, M. and Mogilnikov, K.: Non-destructive characterisation of porous low-k dielectric films. Microelectron. Eng. 64(1), 335 (2002).
64.Kim, B., Son, J., and Ko, M.: The effect of porogen on physical properties in MTMS–BTMSE spin-on organosilicates. J. Mater. Sci. 42(14), 5381 (2007).
65.Hurley, P.T., Du, L.-S., McDaniel, P.L., Peterson, B.K., Weigel, S.J., Haas, M.K., Vrtis, R.N., Sinatore, D., Bitner, M.D., and Theodorou, K.E.: Formation of porous organosilicate glasses produced by PECVD and UV treatment. In Materials, Processes, Integration and Reliability in Advanced Interconnect for Micro- and Nanoelectronics, ed. Lin, Q., Ryan, E.T., Wu, W-L., Yoon, D.Y. (Mater. Res. Soc. Symp. Proc. 990; New York: Cambridge University Press, 2007), p. 3.
66.Iacopi, F., Travaly, Y., Eyckens, B., Waldfried, C., Abell, T., Guyer, E.P., Gage, D.M., Dauskardt, R.H., Sajavaara, T., Houthoofd, K., Grobet, P., Jacobs, P., and Maex, K.: Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation. J. Appl. Phys. 99(5), 053511 (2006).
67.Guo, X., Jakes, J.E., Nichols, M.T., Banna, S., Nishi, Y., and Shohet, J.L.: The effect of water uptake on the mechanical properties of low-k organosilicate glass. J. Appl. Phys. 114(8), 084103 (2013).
68.Baklanov, M., Mogilnikov, K., Polovinkin, V., and Dultsev, F.: Determination of pore size distribution in thin films by ellipsometric porosimetry. J. Vac. Sci. Technol. B 18(3), 1385 (2000).
69.Licitra, C., Bouyssou, R., Chevolleau, T., and Bertin, F.: Multi-solvent ellipsometric porosimetry analysis of plasma-treated porous SiOCH films. Thin Solid Films 518(18), 5140 (2010).
70.Bonilla, G., Shaw, T.M., Liniger, E.G., Cohen, S., Gates, S.M., Grill, A., Shobha, H., Penny, C.J., and Ryan, E.T.: Tailoring dielectric materials for robust BEOL reliability. In IEEE International Reliability Physics Symposium (IRPS), IEEE: 2012; p. 3A.1.1.
71.Baklanov, M.R., Mogilnikov, K.P., and Le, Q.T.: Quantification of processing damage in porous low dielectric constant films. Microelectron. Eng. 83(11), 2287 (2006).
72.Puyrenier, W., Rouessac, V., Broussous, L., Rébiscoul, D., and Ayral, A.: Characterization of the impact of plasma treatments and wet cleaning on a porous low k material. Microelectron. Eng. 83(11–12), 2314 (2006).
73.Rébiscoul, D., Puyrenier, B., Broussous, L., Louis, D., and Passemard, G.: Study of the post-etch cleaning compatibility with dense and porous ULK materials—Characterization of the process impact. Microelectron. Eng. 83(11–12), 2319 (2006).
74.Noguchi, J.: Dominant factors in TDDB degradation of Cu interconnects. IEEE Trans. Electron Devices 52(8), 1743 (2005).
75.Bhanap, A., Ramos, T., Camarena, A., and Naman, A.: Repairing process-induced damage to porous low-k ILDs by post-ash treatment. In Proceedings of Advanced Metallization Conference, Ray, G.W., Smy, T.S., Ohta, T., Tsujimura, M., eds.; MRS: 2003.
76.Broussous, L., Puyrenier, W., Rebiscoul, D., Rouessac, V., and Ayral, A.: Porosity and structure evolution of a SiOCH low k material during post-etch cleaning process. Microelectron. Eng. 84(11), 2600 (2007).
77.Jochen, M. and James, E.B.: An analytic model for atom diffusion and heterogeneous recombination in a porous medium. J. Phys. D: Appl. Phys. 39(17), 3849 (2006).
78.Matyka, M., Khalili, A., and Koza, Z.: Tortuosity-porosity relation in porous media flow. Phys. Rev. E. 78(2), 026306 (2008).
79.Sugahara, S., Usami, K-i., and Matsumura, M.: A proposed organic-silica film for inter-metal-dielectric application. Jpn. J. Appl. Phys. 38(3R), 1428 (1999).
80.Ryan, E.T., Gates, S.M., Grill, A., Molis, S., Flaitz, P., Arnold, J., Sankarapandian, M., Cohen, S.A., Ostrovski, Y., and Dimitrakopoulos, C.: Property modifications of nanoporous pSiCOH dielectrics to enhance resistance to plasma-induced damage. J. Appl. Phys. 104(9), 094109 (2008).
81.Inoue, N., Ito, F., Shobha, H., Gates, S., Ryan, E.T., Virwani, K., Klvmko, N., Madan, A., Tai, L., Adams, E., Cohen, S., Liniger, E., Hu, C.K., Mignot, Y., Grill, A., and Spooner, T.: UV cure impact on robust low-k with sub-nm pores and high carbon content for high performance Cu/low-k BEOL modules. In IEEE International Interconnect Technology Conference (IITC), IEEE: 2013; p. 1.
82.Gates, S.M., Dubois, G., Ryan, E.T., Grill, A., Liu, M., and Gidley, D.: Adjusting the Skeleton and pore structure of porous SiCOH dielectrics. J. Electrochem. Soc. 156(10), G156 (2009).
83.Usami, K.-I., Sugahara, S., Kobayashi, M., Sumimura, K., Hattori, T., and Matsumura, M.: Preparation and properties of silica films with higher-alkyl groups. J. Non-Cryst. Solids. 260(3), 199207 (1999).
84.Goethals, F., Ciofi, I., Madia, O., Vanstreels, K., Baklanov, M.R., Detavernier, C., Van Der Voort, P., and Van Driessche, I.: Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. J. Mater. Chem. 22(17), 8281 (2012).
85.Brinker, C.J. and Scherer, G.W.: Sol-Gel Science: The Physics and Chemistry of Sol-gel Processing (San Diego: Academic Press, 2013).
86.Jousseaume, V., Favennec, L., Zenasni, A., and Gourhant, O.: Porous ultra low k deposited by PECVD: From deposition to material properties. Surf. Coat. Technol. 201(22–23), 9248 (2007).
87.Yim, J-H., Baklanov, M.R., Gidley, D.W., Peng, H., Jeong, H-D., and Sun Pu, L.: Pore structure of modified cyclic silsesquioxane thin films made porous using a cyclodextrins-based porogen. J. Phys. Chem. B 108(26), 8953 (2004).
88.Zallen, R.: The Physics of Amorphous Solids, in the Physics of Amorphous Solids (New York: John Wiley & Sons, Inc., 1983).
89.Ciaramella, F., Jousseaume, V., Maitrejean, S., Verdier, M., Remiat, B., Zenasni, A., and Passemard, G.: Crosslinking impact of mesoporous MSQ films used in microelectronic interconnections on mechanical properties. Thin Solid Films 495(1–2), 124 (2006).
90.Gourhant, O., Gerbaud, G., Zenasni, A., Favennec, L., Gonon, P., and Jousseaume, V.: Crosslinking of porous SiOCH films involving Si–O–C bonds: Impact of deposition and curing. J. Appl. Phys. 108(12), 124105 (2010).
91.Trujillo, N.J., Wu, Q., and Gleason, K.K.: Ultralow dielectric constant Tetravinyltetramethylcyclotetrasiloxane films deposited by Initiated chemical vapor deposition (iCVD). Adv. Funct. Mater. 20(4), 607 (2010).
92.Soleimani Dorcheh, A. and Abbasi, M.H.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1–3), 10 (2008).
93.Baklanov, M.R., Kondoh, E., Lin, E.K., Gidley, D.W., Lee, H.J., Mogilnikov, K.P., and Sun, J.N.: Comparative study of porous SOG films with different non-destructive instrumentation. In Proceedings of the IEEE 2001 International Interconnect Technology Conference, IEEE: 2001; p. 189.
94.Tajima, N., Ohno, T., Hamada, T., Yoneda, K., Kondo, S., Kobayashi, N., Shinriki, M., Inaishi, Y., Miyazawa, K., Sakota, K., Hasaka, S., and Inoue, M.: Carbon-doped silicon oxide films with hydrocarbon network bonds for low-k dielectrics: Theoretical investigations. Jpn. J. Appl. Phys. 46(9R), 5970 (2007).
95.Dubois, G., Magbitang, T., Volksen, W., Simonyi, E.E., and Miller, R.D.: New spin-on oxycarbosilane low-k dielectric materials with exceptional mechanical properties. In Proceedings of the IEEE 2005 International Interconnect Technology Conference, IEEE: 2005: p. 226.
96.Li, H., Lin, Y., Tsui, T.Y., and Vlassak, J.J.: The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates. J. Mater. Res. 24(01), 107 (2009).
97.Vanstreels, K., Wu, C., Verdonck, P., and Baklanov, M.R.: Intrinsic effect of porosity on mechanical and fracture properties of nanoporous ultralow-k dielectrics. Appl. Phys. Lett. 101(12), 123109 (2012).
98.Vanstreels, K., Wu, C., Gonzalez, M., Schneider, D., Gidley, D., Verdonck, P., and Baklanov, M.R.: Effect of pore structure of nanometer scale porous films on the measured elastic modulus. Langmuir 29(38), 12025 (2013).
99.Vanstreels, K., Wu, C., and Baklanov, M.R.: Mechanical stability of porous low-k dielectrics. ECS J. Solid State Sci. Technol. 4(1), N3058 (2015).
100.Takada, S., Hata, N., Seino, Y., Fujii, N., and Kikkawa, T.: Dependences of Young's modulus of porous silica low dielectric constant films on skeletal structure and porosity. J. Appl. Phys. 100(12), 123512 (2006).
101.Urbanowicz, A.M., Vanstreels, K., Verdonck, P., Van Besien, E., Christos, T., Shamiryan, D., De Gendt, S., and Baklanov, M.R.: Effect of UV wavelength on the hardening process of porogen-containing and porogen-free ultralow-k plasma-enhanced chemical vapor deposition dielectrics. J. Vac. Sci. Technol., B 29(3), 032201 (2011).
102.Landskron, K., Hatton, B.D., Perovic, D.D., and Ozin, G.A.: Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings. Science 302(5643), 266 (2003).
103.Fan, H., Hartshorn, C., Buchheit, T., Tallant, D., Assink, R., Simpson, R., Kissel, D.J., Lacks, D.J., Torquato, S., and Brinker, C.J.: Modulus-density scaling behaviour and framework architecture of nanoporous self-assembled silicas. Nat. Mater. 6(6), 418 (2007). Theije, F.K., Balkenende, A.R., Verheijen, M.A., Baklanov, M.R., Mogilnikov, K.P., and Furukawa, Y.: Structural characterization of mesoporous organosilica films for ultralow-k dielectrics. J. Phys. Chem. B 107(18), 4280 (2003).
105.Wang, W., Grozea, D., Kohli, S., Perovic, D.D., and Ozin, G.A.: Water Repellent periodic mesoporous organosilicas. ACS Nano 5(2), 1267 (2011).
106.Wills, A.W., Michalak, D.J., Ercius, P., Rosenberg, E.R., Perciano, T., Ushizima, D., Runser, R., and Helms, B.A.: Block copolymer packing limits and interfacial reconfigurability in the assembly of periodic mesoporous organosilicas. Adv. Funct. Mater. 25(26), 4120 (2015).
107.Bétard, A. and Fischer, R.A.: Metal–organic framework thin films: From fundamentals to applications. Chem. Rev. 112(2), 1055 (2012).
108.Wang, Z., Liu, J., Grosjean, S., Wagner, D., Guo, W., Gu, Z., Heinke, L., Gliemann, H., Bräse, S., and Wöll, C.: Monolithic, crystalline MOF Coating: An excellent patterning and photoresist material. ChemNanoMat 1(5), 338345 (2015).
109.Eslava, S., Zhang, L., Esconjauregui, S., Yang, J., Vanstreels, K., Baklanov, M.R., and Saiz, E.: Metal-organic framework ZIF-8 films As low-κ dielectrics in microelectronics. Chem. Mater. 25(1), 27 (2013).
110.Thomas, A.: Functional materials: From hard to soft porous frameworks. Angew. Chem., Int. Ed. 49(45), 8328 (2010).
111.Roberts, A.P. and Garboczi, E.J.: Computation of the linear elastic properties of random porous materials with a wide variety of microstructure. Proc. R. Soc. Lond. A Math Phys. Sci. 458(2021), 1033 (2002).
112.Boccaccini, A.R. and Fan, Z.: A new approach for the Young's modulus-porosity correlation of ceramic materials. Ceram. Int. 23(3), 239 (1997).
113.Gitman, I.M., Askes, H., and Sluys, L.J.: Representative volume: Existence and size determination. Eng. Fract. Mech. 74(16), 2518 (2007).
114.Ostoja-Starzewski, M.: Material spatial randomness: From statistical to representative volume element. Probabilist. Eng. Mech. 21(2), 112 (2006).
115.Chen, Z., Wang, X., Giuliani, F., and Atkinson, A.: Microstructural characteristics and elastic modulus of porous solids. Acta Mater. 89, 268 (2015).
116.Marsik, P., Urbanowicz, A.M., Verdonck, P., De Roest, D., Sprey, H., and Baklanov, M.R.: Effect of ultraviolet curing wavelength on low-k dielectric material properties and plasma damage resistance. Thin Solid Films 519(11), 3619 (2011).
117.Guan, M., Wang, W., Henderson, E.J., Dag, Ö., Kübel, C., Chakravadhanula, V.S.K., Rinck, J., Moudrakovski, I.L., Thomson, J., McDowell, J., Powell, A.K., Zhang, H., and Ozin, G.A.: Assembling Photoluminescent silicon Nanocrystals into periodic mesoporous organosilica. J. Am. Chem. Soc. 134(20), 8439 (2012).
118.Lu, G., Farha, O.K., Zhang, W., Huo, F., and Hupp, J.T.: Engineering ZIF-8 thin films for hybrid MOF-based devices. Adv. Mater. 24(29), 3970 (2012).
119.Tan, J.C., Bennett, T.D., and Cheetham, A.K.: Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 107(22), 9938 (2010).
120.Demessence, A., Boissiere, C., Grosso, D., Horcajada, P., Serre, C., Ferey, G., Soler-Illia, G.J.A.A., and Sanchez, C.: Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. J. Mater. Chem. 20(36), 7676 (2010).
121.Park, K.S., Ni, Z., Côté, A.P., Choi, J.Y., Huang, R., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., and Yaghi, O.M.: Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 103(27), 10186 (2006).
122.Hermes, S., Schröder, F., Chelmowski, R., Wöll, C., and Fischer, R.A.: Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127(40), 13744 (2005).
123.Gliemann, H. and Wöll, C.: Epitaxially grown metal-organic frameworks. Mater. Today 15(3), 110 (2012).
124.Heinke, L., Tu, M., Wannapaiboon, S., Fischer, R.A., and Wöll, C.: Surface-mounted metal-organic frameworks for applications in sensing and separation. Microporous Mesoporous Mater. 216, 200 (2015).
125.Bielefeld, J.D.: Personal communication, 2015.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed