Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T16:59:45.313Z Has data issue: false hasContentIssue false

Polycarbodiimide and polyimide/cyanate thermoset in situ molecular composites

Published online by Cambridge University Press:  31 January 2011

D. R. Wiff
Affiliation:
Materials Directorate, WL/MLPJ, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433
G. M. Lenke
Affiliation:
49 5th Street S.E., Massillon, Ohio 44646
P. D. Fleming III
Affiliation:
Department of Paper & Printing Science and Engineering, Western Michigan University, Kalamazoo, Michigan 49008
Get access

Extract

The synthesis of polycarbodiimide and polyimide in a cyanate resin precursor was achieved. A unique procedure for achieving a high molecular weight of the molecular composite reinforcement molecules was demonstrated. In spite of phase separation being present during the processing, the final cured composites were transparent. The enhanced mechanical properties and the presence of a single Tg, which increases with rigid rod content, were indications that a molecular composite was achieved. The agreement between measured mechanical properties and those predicted using molecular mechanics simulations CERIUS2 software was encouraging.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hwang, W-F., Wiff, D. R., and Helminiak, T. E., U.S. Patent 4,377,546 (1982).Google Scholar
2.Hwang, W-F., Wiff, D. R., Benner, C. L., and Helminiak, T. E., J. Macromol. Sci., Phys. B22m, 231257 (1983).CrossRefGoogle Scholar
3.Wiff, D. R., Helminiak, T. E., and Hwang, W-F., in High Modulus Polymers, edited by Zachariodes, A. E. and Porter, R. S. (Marcel Dekker, New York, 1988), Chap. 8.Google Scholar
4.Lenke, G. M. and Wiff, D. R., U.S. Patent 5,068,292 (1991); U.S. Patent 5,223,588 (1993).Google Scholar
5.Lenke, G. M. and Wiff, D. R., U.S. Patent 5,223,584 (1993).Google Scholar
6.Husman, G., Helminiak, T., Adams, W., Wiff, D., and Benner, C., Org. Coat. Plast. Chem. 40, 797802 (1979).Google Scholar
7.Onsager, L., Ann. N.Y. Acad. Sci. 51, 627659 (1949).CrossRefGoogle Scholar
8.Flory, P. J. and Abe, A., Macromol. 11, 11191144 (1978).CrossRefGoogle Scholar
9.Flory, P. J., in Recent Adv. Liq. Cryst. Polym., edited by Chapoy, L. (Elsevier Applied Science, London, UK, 1984), pp. 99103.Google Scholar
10.Wiff, D. R., Lenke, G.M., and Fleming, P. D., J. Polym. Sci., Polym. Phys. Ed. 32, 25552565 (1994).CrossRefGoogle Scholar
11.Wiff, D. R. and Lenke, G. M., 37th Int. SAMPE Symp. 37, 9911003 (1992).Google Scholar
12.Painter, P. C., Tang, W-L., Graf, J. F., Thomson, B., and Coleman, M. M., Macromol. 24, 39293936 (1991).CrossRefGoogle Scholar
13.Wolfe, J. F., in Encyclopedia of Polymer Science and Engineering (John Wiley & Sons, New York, 1988), Vol. 11, pp. 601635.Google Scholar
14.Campbell, T. W., Monagle, J. J., and Foldi, V. S., J. Am. Chem. Soc. 84, 36733677 (1962).CrossRefGoogle Scholar
15.Campbell, T. W. and Smeltz, K. C., J. Org. Chem. 28, 20692075 (1963).CrossRefGoogle Scholar
16.Baumgarten, M. E., Org. Synth. (John Wiley & Sons, New York, 1973), Vol. 5, pp. 787790.Google Scholar
17.Alberino, L. M., Farrissey, W. J., and Sayigh, A. A. R., J. Appl. Polym. Sci. 21, 19992008 (1977).CrossRefGoogle Scholar
18.Shimp, D. A.et al., AroCy Cyanate Ester Resins: Chemistry, Properties and Applications (Ciba-Geigy publication, 1990).Google Scholar
19.Mayo, S. L., Olafson, B. D., and Goddard, W. A., J. Chem. Phys. 94, 88918909 (1991).Google Scholar
20.Stewart, J. J. P., J. Comp. Chem. 10, 209220 (1989);CrossRefGoogle Scholar
Stewart, J. J. P., J. Comput. Aid. Mol. Des. 4, 1105 (1990).CrossRefGoogle Scholar