Skip to main content Accessibility help
×
Home

Plasticity size effects in nanoindentation

  • A.J. Bushby (a1) and D.J. Dunstan (a2)

Abstract

In conventional continuum mechanics, the yield behavior of a material is size independent. However, in nanoindentation, plasticity size effects have been observed for many years, where a higher hardness is measured for smaller indentation size. In this paper we show that there was a size effect in the initiation of plasticity, by using spherical indenters with different radii, and that the length scale at which the size effect became significant depended on the mechanism of plastic deformation. For yield by densification (fused silica), there was no size effect in the nanoindentation regime. For phase transition (silicon), the length scale was of the order tens of nanometers. For materials that deform by dislocations (InGaAs/InP), the length scale was of the order a micrometer, to provide the space required for a dislocation to operate. We show that these size effects are the result of yield initiating over a finite volume and predict the length scale over which each mechanism should become significant.

Copyright

References

Hide All
1.Tabor, D.The Hardness of Metals (Clarendon Press, Oxford, 1951).
2.Farkas, D., Kung, H., Mayo, M., van Swygenhoven, H. and Weertman, J. in Quasicrystals—Preparation, Properties and Applications, edited by Berlin-Ferré, E., Thiel, P.P., Tsai, A.P., and Urban, K. (Mater. Res. Soc. Symp. Proc. 643, Warrendale, PA, 2001)
3.Bushby, A.J. and Jennett, N.M. in Fundamentals of Nanoindentation and Nantribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001).
4.Gane, N. and Bowden, F.P., J. Appl. Phys. 39 1432 (1968).
5.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P. and Wykobek, J.T.Acta Mater. 44 3585 (1996).
6.Michalske, T.A. and Houston, J.E., Acta Mater. 46 391 (1998).
7.Bahr, D.F., Krammer, D.E. and Gerberich, W.W., Acta Mater. 46 3605 (1998).
8.Kiely, J.D. and Houston, J.E., Phys. Rev. B 57 12588 (1998).
9.Gerberich, W.W., Krammer, D.E., Tymiak, N.I., Volinsky, A.A., Bahr, D.F. and Kriese, M.D., Acta Mater. 47 4115 (1999).
10.Nix, W.D. and Gao, H.J., Mech. Phys. Solids 46 411 (1998).
11.Lim, Y.Y. and Chaudhri, M.M., Philos. Mag. A 79 2979 (1999).
12.Lim, Y.Y., Bushby, A.J. and Chaudhri, M.M. in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998) p. 145.
13.Jayaweera, N.B., Downes, J.R., Frogley, M.D., Hopkinson, M., Bushby, A.J., Kidd, P., Kelly, A. and Dunstan, D.J., Proc. Roy. Soc. London A 459 2049 (2003).
14.Bushby, A.J. and Jennett, N.M. in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.17.
15.Field, J.S. and Swain, M.V., J. Mater. Res. 8 297 (1993).
16.Bushby, A.J., Nondestruct. Test. Eval. 17 213 (2001).
17.Asif, S.A. Syed and Pethica, J.B., Philos. Mag. A 76 1105 (1997).
18.Jayaweera, N.B., Bushby, A.J., Kidd, P., Kelly, A. and Dunstan, D.J., Philos. Mag. Lett. 79 343 (1999).
19.Dunstan, D.J., J. Mater. Sci.: Mater. Electron. 8 337 (1997).
20.Williams, J.S., Chen, Y., Wong-Leung, J., Kerr, A. and Swain, M.V., J. Mater. Res. 14, 2338 (1999).
21.Hu, J.Z. and Spain, I.L., Solid State Commun. 51 263 (1984).
22.Weinstein, B.A., Hark, S.K., Burnham, R.D. and Martin, R.M., Phys. Rev. Lett. 58 781 (1987).
23.Dunstan, D.J., Prins, A.D., Gil, B. and Faurie, J-P., Phys. Rev. B 44 4017 (1991).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed