Skip to main content Accessibility help

Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity

  • Jie Chen (a1), Shaohua Shen (a1), Penghui Guo (a1), Meng Wang (a1), Jinzhan Su (a1), Daming Zhao (a1) and Liejin Guo (a1)...


High rate of charge carrier recombination is a critical factor limiting the photocatalytic activity of g-C3N4. In this contribution, we demonstrate that this issue can be alleviated by constructing a plasmonic photocatalyst with tailored plasmonic-metal nanostructures, i.e., core–shell-typed Ag@SiO2 nanoparticles. Compared with pure g-C3N4, the photocatalytic hydrogen production activity was enhanced by 63% for Ag@SiO2/g-C3N4. As analysis from the photoluminescence results, the enhancement could be attributed to that plasmonic nanostructures favored the separation of electron–hole pairs in the semiconductor due to localized surface plasmons resonance effect. It was found that the silica shell between the Ag nanoparticles and g-C3N4 was essential for the better photocatalytic activity of Ag@SiO2/g-C3N4 than that of Ag/g-C3N4 by limiting the energy-loss Förster energy transfer process.


Corresponding author

a) Address all correspondence to these authors. e-mail:


Hide All
1. Chen, X-B., Shen, S-H., Guo, L-J., and Mao, S-S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503 (2010).
2. Shen, S-H., Shi, J-W., Guo, P-H., and Guo, L-J.: Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 8, 525 (2011).
3. Shi, J-W. and Guo, L-J.: ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. Mater. Int. 22, 592 (2012).
4. Osterloh, F.E.: Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 36 (2007).
5. Zhang, L.: Energy Efficiency and Renewable Energy Through Nanotechnology (Springer, London, 2011), pp. 487, 529.
6. Maeda, K. and Domen, K.: Oxynitride materials for solar water splitting. MRS Bull. 36, 25 (2011).
7. Wang, X-C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 77 (2008).
8. Wang, X-C., Blechert, S., and Antonietti, M.: Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2, 1596 (2012).
9. Wang, Y., Bai, X., Pan, C., He, J., and Zhu, Y.: Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4 . J. Mater. Chem. 22, 11568 (2012).
10. Kang, H-W., Lim, S-N., Song, D., and Park, S-B.: Organic-inorganic composite of g-C3N4―SrTiO3: Rh photocatalyst for improved H2 evolution under visible light irradiation. Int. J. Hydrogen Energy 37, 11602 (2012).
11. Sun, L., Zhao, X., Jia, C-J., Zhou, Y., Cheng, X., Li, P., Liu, L., and Fan, W-L.: Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: Investigation based on experimental and theoretical studies. J. Mater. Chem. 22, 23428 (2012).
12. Ge, L., Han, C., and Liu, J.: Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl. Catal., B. 108109, 100 (2011).
13. Lu, X., Wang, Q., and Cui, D.: Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite. J. Mater. Sci. Technol. 26, 925 (2010).
14. Yan, H. and Yang, H.: TiO2/g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509, 26 (2011).
15. Wang, Y., Shi, R., Lin, J., and Zhu, Y.: Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4 . Energy Environ. Sci. 4, 2922 (2011).
16. Sun, J-X., Yuan, Y-P., Qiu, L-G., Jiang, X., Xie, A-J., Shen, Y-H., and Zhu, J-F.: Fabrication of composite photocatalyst g-C3N4–ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans. 41, 6756 (2012).
17. Yan, S-C., Lv, S-B., Li, Z-S., and Zou, Z-G.: Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans. 39, 1488 (2010).
18. Zhang, J., Zhang, M., Sun, R-Q., and Wang, X-C.: A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. 124, 10292 (2012).
19. Di, Y., Wang, X-C., Thomas, A., and Antonietti, M.: Making metal-carbon nitride heterojunctions for improved photocatalytic hydrogen evolution with visible light. ChemCatChem 2, 834 (2010).
20. Maeda, K., Wang, X-C., Nishihara, Y., Lu, D., Antonietti, M., and Domen, K.: Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C. 113, 4940 (2009).
21. Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J., and Whangbo, M-H.: : a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. 47, 7931 (2008).
22. Wang, P., Huang, B., Zhang, X., Qin, X., Dai, Y., Wang, Z., and Lou, Z.: Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI. ChemCatChem 3, 360 (2011).
23. Zhang, Q., Lima, D-Q., Lee, I., Zaera, F., Chi, M., and Yin, Y.: A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. 123, 7226 (2011).
24. Awazu, K., Fujimaki, M., Rockstuhl, C., Tominaga, J., Murakami, H., Ohki, Y., Yoshida, N., and Watanabe, T.: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).
25. Ingram, D.B. and Linic, S.: Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc. 133, 5202 (2011).
26. Silvert, P.Y., Herrera-Urbina, R., and Tekaia-Elhsissen, K.: Preparation of colloidal silver dispersions by the polyolprocess. J. Mater. Chem. 7, 293 (1997).
27. Gao, T., Jelle, B.P., and Gustavsen, A.: Core–shell-typed Ag@SiO2 nanoparticles as solar selective coating materials. J. Nanopart. Res. 15, 1 (2013).
28. Kim, D., Jeong, S., and Moon, J.: Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 17, 4019 (2006).
29. Graf, C., Vossen, D.L., Imhof, A., and van Blaaderen, A.: A general method to coat colloidal particles with silica. Langmuir 19, 6693 (2003).
30. Warren, S.C. and Thimsen, E.: Plasmonic solar water splitting. Energy Environ. Sci. 5, 5133 (2012).
31. Xu, W., Liu, X., Ren, J., Zhang, P., Wang, Y., Guo, Y-G., Guo, Y., and Lu, G.: A novel mesoporous Pd/cobalt aluminate bifunctional catalyst for aldol condensation and following hydrogenation. Catal. Commun. 11, 721 (2010).
32. Zhao, Z., Lin, X., Jin, R., Dai, Y., and Wang, G.: High catalytic activity in CO PROX reaction of low cobalt-oxide loading catalysts supported on nano-particulate CeO2–ZrO2 oxides. Catal. Commun. 12, 1448 (2011).
33. Wiley, B.J., Im, S.H., Li, Z-Y., McLellan, J., Siekkinen, A., and Xia, Y-N.: Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B. 110, 15666 (2006).
34. Linic, S., Christopher, P., and Ingram, D.B.: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911 (2011).
35. Niu, P., Zhang, L., Liu, G., and Cheng, H-M.: Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763 (2012).
36. Barman, S. and Sadhukhan, M.: Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 22, 21832 (2012).
37. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy (Springer, London, 2009).
38. Meng, Y., Shen, J., Chen, D., and Xin, G.: Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst. Rare Met. 30, 276 (2011).

Plasmonic Ag@SiO2 core/shell structure modified g-C3N4 with enhanced visible light photocatalytic activity

  • Jie Chen (a1), Shaohua Shen (a1), Penghui Guo (a1), Meng Wang (a1), Jinzhan Su (a1), Daming Zhao (a1) and Liejin Guo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed