Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T22:52:31.162Z Has data issue: false hasContentIssue false

Plasma enhanced chemical vapor deposition of silicon nitride films from a metal-organic precursor

Published online by Cambridge University Press:  03 March 2011

David M. Hoffman*
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204-5641
Sri Prakash Rangarajan
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204-5641
Satish D. Athavale
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, Texas 77204-4792
Shashank C. Deshmukh
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, Texas 77204-4792
Demetre J. Economou*
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, Texas 77204-4792
Jia-Rui Liu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5932
Zongshuang Zheng
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5932
Wei-Kan Chu
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, Texas 77204-5932
*
a)Authors to whom correspondence should be addressed.
a)Authors to whom correspondence should be addressed.
Get access

Abstract

Silicon nitride films are grown by plasma enhanced chemical vapor deposition from tetrakis(dimethylamido)silicon, Si(NMe2)4, and ammonia precursors at substrate temperatures of 200-400 °C. Backscattering spectrometry shows that the films are close to stoichiometric. Depth profiling by Auger electron spectroscopy shows uniform composition and no oxygen or carbon contamination in the bulk. The films are featureless by scanning electron microscopy under 100,000X magnification.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Proc. of the Symposium on Silicon Nitride Thin Insulating Films, edited by Kapoor, V.J. and Stein, H.J. (The Electrochemical Society, Pennington, NJ, 1983), Vol. 83–8 and references therein; Sze, S.M., VLSI Technology, 2nd ed. (McGraw-Hill, New York, 1988); Pierson, H. O., Handbook of Chemical Vapor Deposition (Noyes Publications, Park Ridge, NJ, 1992), p. 224.Google Scholar
2Doo, V. Y., Nichols, D. R., and Silvey, G. A., J. Electrochem. Soc. 113, 1279 (1966).Google Scholar
3Doo, V. Y., Kerr, D. R., and Nichols, D. R., J. Electrochem. Soc. 115, 61 (1968).Google Scholar
4Roenigk, K. F. and Jensen, K. F., J. Electrochem. Soc. 134, 1777 (1987).Google Scholar
5Zhang, S-L., Wang, J-T., Kaplan, W., and Æstling, M., Thin Solid Films 213, 182 (1992).Google Scholar
6Samuelson, G. M. and Kar, K. M., J. Electrochem. Soc. 129, 1773 (1982).Google Scholar
7Tsu, D. V., Lucovsky, G., and Mantini, M. J., Phys. Rev. B 33, 7069 (1986).Google Scholar
8Lorenz, H., Eisele, I., Ramm, J., Edlinger, J., and Bühler, M., J. Vac. Sci. Technol. B9, 208 (1987).Google Scholar
9Schuh, H., Schlosser, T., Bissinger, P., and Schmidbaur, H., Z. Anorg. Allg. Chem. 619, 1347 (1993).Google Scholar
10Gordon, R. G., Hoffman, D. M., and Riaz, U., Chem. Mater. 2, 481 (1990).Google Scholar
11Mikata, Y. and Moriya, T., Eur. Pat. Appl. EP 464, 515 (1991); JP Appl. 171, 156 (1990); Chem. Abstr. 116: 163137c (1992).Google Scholar
12Lukovsky, G., Tsu, D. V., Rudder, R. A., and Markunas, R. J., in Thin Film Processes II, edited by Vossen, J. L. and Kern, W. (Academic Press, New York, 1991).Google Scholar
13Chu, W-K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978); Feldman, L. C. and Mayer, J. W., Fundamentals of Surfaces and Thin Film Analysis (North-Holland, New York, 1986).Google Scholar
14Jacobsson, R., Thin Solid Films 34, 191 (1976).Google Scholar
15Richard, P. D., Markunas, R. J., Lucovsky, G., Fountain, G. G., Mansour, A. N., and Tsu, D. V., J. Vac. Sci. Technol. A3, 867 (1985).Google Scholar
16Hattangady, S. V., Fountain, G. G., Rudder, R. A., and Markunas, R. J., J. Vac. Sci. Technol. A7, 570 (1989).Google Scholar
17Cotler, T. J. and Chapple-Sokol, J., J. Electrochem. Soc. 140, 2071 (1993).Google Scholar
18Zhou, N-S., Fujita, S., and Sasaki, A., J. Electron. Mater. 14, 55 (1985).Google Scholar
19Claassen, W. A. P., Valkenburg, W.G.J.N., Willemsen, M. F. C., and Wijgert, W.M. v.d., J. Electrochem. Soc. 132, 893 (1985).Google Scholar
20Lucovsky, G. and Tsu, D. V., J. Vac. Sci. Technol. A5, 2231 (1987).Google Scholar
21Chow, R., Lanford, W. A., Ke-Ming, W., and Rosier, R. S., J. Appl. Phys. 53, 5630 (1982).Google Scholar
22Nguyen, S. V., J. Vac. Sci. Technol. B4, 1159 (1986).Google Scholar
23Hoffman, D. M., Polyhedron 13, 1169 (1994).Google Scholar
24Hoffman, D. M., Rangarajan, S. P., Athavale, S. D., Economou, D. J., Liu, J-R., Zheng, Z., and Chu, W-K., in Metal-Organic Chemical Vapor Deposition of Electronic Ceramics, edited by Desu, S. B., Beach, D. B., Wessels, B. W., and Gokoglu, S. (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994), p. 3.Google Scholar
25For examples in which homoleptic transition metal amido complexes are used in PECVD processes to prepare nitride films, see Weber, A., Nikulski, R., and Klages, C-P., Appl. Phys. Lett. 63, 325 (1993); Wendel, H. and Suhr, H., Appl. Phys. A 54, 389 (1992).Google Scholar