Skip to main content Accessibility help

Photomemristors using carbon nanowall/diamond heterojunctions

  • Kenji Ueda (a1), Hideharu Itou (a1) and Hidefumi Asano (a1)


This work demonstrates the in situ growth of carbon nanowalls (CNWs) on diamond semiconductors by microwave plasma-assisted chemical vapor deposition. The resulting CNW/diamond junctions behave as photomemristors having both photocontrollable multiple resistance states and nonvolatile memory functions. The resistance state (high or low resistance) can be selected by irradiation with blue or violet light in conjunction with the application of a bias voltage, giving a large resistance switching ratio of ∼106. The photoinduced resistance switching behaviors are rarely observed and has only been observed in a few materials and/or heterostructures. These junctions also exhibit a photoresponsivity of ∼12 A/W, which is much larger than that obtained from photodiodes composed of other materials. These results suggest that CNW/diamond (i.e., carbon sp2/sp3) junctions could have applications in novel photocontrollable devices, which have photosensing, memory, and switching functions.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Kasu, M., Ueda, K., Yamauchi, Y., Tallaire, A., and Makimoto, T.: Diamond-based RF power transistors: Fundamentals and applications. Diamond Relat. Mater. 16, 1010 (2007).
2.Kawarada, H., Tsuboi, H., Naruo, T., Yamada, T., Xu, T., Daicho, A., Saito, T., and Hiraiwa, A.: C–H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl. Phys. Lett. 105, 013510 (2014).
3.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).
4.Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., and Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).
5.Yu, J., Liu, G., Sumant, A.V., Goyal, V., and Baladin, A.A.: Graphene-on-diamond devices with increased current-carrying capacity: Carbon sp 2-on-sp 3 technology. Nano Lett. 12, 1603 (2012).
6.Konabe, S., Cuong, N.T., Otani, M., and Okada, S.: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations. Appl. Phys. Express 6, 045104 (2013).
7.Shiga, T., Konabe, S., Shiomi, J., Yamamoto, T., Maruyama, S., and Okada, S.: Graphene–diamond hybrid structure as spin-polarized conducting wire with thermally efficient heat sinks. Appl. Phys. Lett. 100, 233101 (2012).
8.Ma, Y., Dai, Y., Guo, M., and Huang, B.: Graphene–diamond interface: Gap opening and electronic spin injection. Phys. Rev. B 85, 235448 (2012).
9.Wang, Y., Jaiswal, M., Lin, M., Saha, S., Ozyilmaz, B., and Loh, K.P.: Electronic properties of nanodiamond decorated graphene. ACS Nano 6, 1018 (2012).
10.Ueda, K., Aichi, S., and Asano, H.: Photo-controllable memristive behavior of graphene/diamond heterojunctions. Appl. Phys. Lett. 108, 222102 (2016).
11.Tzeng, Y., Chen, W.L., Wu, C., Lo, J-Y., and Li, C-Y.: The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition. Carbon 53, 120 (2013).
12.Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D.A., Rummeli, M.H., Opitz, J., Cuniberti, G., Lee, J-S., and Meyyappan, M.: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).
13.Hiramatsu, M., Shiji, K., Amano, H., and Hori, M.: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004).
14.Ago, H., Ogawa, Y., Tsuji, M., Mizuno, S., and Hibino, H.: Catalytic growth of graphene: Toward large-area single-crystalline graphene. J. Phys. Chem. Lett. 3, 2228 (2012).
15.Kondo, S., Kawai, S., Takeuchi, W., Yamakawa, K., Den, S., Kano, H., Hiramatsu, M., and Hori, M.: Initial growth process of carbon nanowalls synthesized by radical injection plasma enhanced chemical vapor deposition. J. Appl. Phys. 106, 094302 (2009).
16.Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T.: Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films. Phys. Rev. B 38, 4067 (1988).
17.Nemanich, R.J., Glass, J.T., Lucovsky, G., and Shroder, R.E.: Raman scattering characterization of carbon bonding in diamond and diamondlike thin films. J. Vac. Sci. Technol., A 6, 1783 (1988).
18.Kolmogorov, A.N. and Crespi, V.H.: Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).
19.Borst, T.H. and Weiss, O.: Electrical characterization of homoepitaxial diamond films doped with B, P, Li, and Na during crystal growth. Diamond Relat. Mater. 7, 948 (1995).
20.Chen, C-C., Aykol, M., Chang, C-C., Levi, A.F.J., and Cronin, S.G.: Graphene–silicon Schottky diodes. Nano Lett. 11, 1863 (2011).
21.Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Di Gaspare, L., Palange, E., and Evangelisti, F.: Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett. 72, 3175 (1998).
22.Zeng, L., Wang, M., Hu, H., Nie, B., Yu, Y., Wu, C., Wang, L., Hu, J., Xie, C., Liang, F., and Luo, L.: Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5, 9362 (2013).
23.Pershin, Y.V. and Ventra, M.D.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145 (2011).
24.Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., and Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107 (2005).
25.Wang, W., Panin, G.N., Fu, X., Zhang, L., IIanchezhiyan, P., Pelenovich, V.O., Fu, D., and Kang, T.W.: MoS2 memristor with photoresistive switching. Sci. Rep. 6, 31224 (2016).
26.Maier, P., Hartmann, F., Dias, M.R.S., Emmerling, M., Schneider, C., Castelano, L.K., Kamp, M., Marques, G.E., Lopez-Richard, V., Worschech, L., and Hofling, S.: Light sensitive memristor with bi-directional and wavelength-dependent conductance control. Appl. Phys. Lett. 109, 023501 (2016).
27.Porro, S., Accornero, E., Pirri, C.F., and Ricciardi, C.: Memristive devices based on graphene oxide. Carbon 85, 383 (2015).
28.Raeber, T.J., Zhao, Z.C., Mordoch, B.J., McKenzie, D.R., McCulloch, D.G., and Partridge, J.G.: Resistive switching and transport characteristics of an all-carbon memristor. Carbon. 136, 280 (2018).
29.Chen, Y., Chang, K., Chang, T., Chen, H., Young, T., Tsai, T., Zhang, R., Chu, T., Ciou, J., Lou, J., Chen, K., Chen, J., Zheng, J., and Sze, S.M.: Resistance switching induced by hydrogen and oxygen in diamond-like carbon memristor. IEEE Electron Device Lett. 35, 1016 (2014).
30.Ueda, K., Kawamoto, K., Soumiya, T., and Asano, H.: High-temperature characteristics of Ag and Ni/diamond Schottky diodes. Diamond Relat. Mater. 38, 41 (2013).


Related content

Powered by UNSILO

Photomemristors using carbon nanowall/diamond heterojunctions

  • Kenji Ueda (a1), Hideharu Itou (a1) and Hidefumi Asano (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.