Skip to main content Accessibility help

Photoluminescence of (La,Eu)2O2SO4 red-emitting phosphors derived from layered hydroxide

  • Xuejiao Wang (a1), Ji-Guang Li (a1), Qi Zhu (a2) and Xudong Sun (a2)


Red-emitting (La,Eu)2O2SO4 phosphors have been successfully prepared using the layered hydroxide of (La,Eu)2(OH)4SO4·2H2O as the precursor. The precursor compound was firstly crystallized via hydrothermal reaction (100 °C and pH = 9.0) as well-dispersed nanoplates, followed by dehydration and dehydroxylation in the 400–1200 °C temperature range in ambient air to yield (La,Eu)2O2SO4. The phosphors show intense red emissions originated from the ff transitions of Eu3+, dominantly peaking at 617 nm, under O–Eu charge transfer excitation at 284 nm. The optimal Eu3+ content was experimentally determined to be 5 at.%, agreeing well with theoretical analysis, and the concentration quenching of luminescence was suggested to be due to exchange interactions. Fluorescence decay analysis indicates that a higher calcination temperature or Eu3+ content would decrease the lifetime of the 617 nm emission.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Machida, M., Kawamura, K., Ito, K., and Ikeue, K.: Large-capacity oxygen storage by lanthanide oxysulfate/oxysulfide systems. Chem. Mater. 17(6), 1487 (2005).
2. Machida, M., Kawano, T., Eto, M., Zhang, D.J., and Ikeue, K.: Ln dependence of the large-capacity oxygen storage/release property of Ln oxysulfate/oxysulfide systems. Chem. Mater. 19(4), 954 (2007).
3. Lessard, J.D., Valsamakis, I., and Flytzani-Stephanopoulos, M.: Novel Au/La2O3 and Au/La2O2SO4 catalysts for the water–gas shift reaction prepared via an anion adsorption method. Chem. Commun. 48(40), 4857 (2012).
4. Valsamakis, I. and Flytzani-Stephanopoulos, M.: Sulfur-tolerant lanthanide oxysulfide catalysts for the high-temperature water-gas shift reaction. Appl. Catal., B 106(1–2), 255 (2011).
5. Yamamoto, S., Tamura, S., and Imanaka, N.: New type of potassium ion conducting solid based on lanthanum oxysulfate. J. Alloys Compd. 418(1–2), 226 (2006).
6. Lian, J.B., Sun, X.D., Liu, Z.G., Yu, J.Y., and Li, X.D.: Synthesis and optical properties of (Gd1−x Eu x )2O2SO4 nano-phosphors by a novel co-precipitation method. Mater. Res. Bull. 44(9), 1822 (2009).
7. Lian, J.B., Liang, P., Wang, B.X., and Liu, F.: Homogeneous precipitation synthesis and photoluminescence properties of La2O2SO4:Eu3+ quasi-spherical phosphors. J. Ceram. Process. Res. 15(6), 382 (2014).
8. Chen, G., Chen, F.S., Liu, X.H., Ma, W., Luo, H.M., Li, J.H., Ma, R.Z., and Qiu, G.Z.: Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Res. 7(8), 1093 (2014).
9. Song, L.X., Shao, X.L., Du, P.F., Cao, H.B., Hui, Q., Xing, T.H., and Xiong, J.: A facile preparation and the luminescent properties of Eu3+-doped Y2O2SO4 nanopieces. Mater. Res. Bull. 48(11), 4896 (2013).
10. Kijima, T., Shinbori, T., Sekita, M., Uota, M., and Sakai, G.: Abnormally enhanced Eu3+ emission in Y2O2SO4:Eu3+ inherited from their precursory dodecyl sulfate-templated concentric-layered nanostructure. J. Lumin. 128(3), 311 (2008).
11. Li, J.G., Li, X.D., Sun, X.D., and Ishigaki, T.: Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping. J. Phys. Chem. C 112(31), 11707 (2008).
12. Srivastava, A.M., Setlur, A.A., Comanzo, H.A., Gao, Y., Hannah, M.E., Hughes, J.A., and Happek, U.: Optical spectroscopy and thermal quenching of the Ce3+ luminescence in yttrium oxysulfate, Y2O2[SO4]. Opt. Mater. 30(10), 1499 (2008).
13. Wang, X.J., Li, J.G., Zhu, Q., Li, X.D., Sun, X.D., and Sakka, Y.: Synthesis, characterization, and photoluminescent properties of (La0.95Eu0.05)2O2SO4 red phosphors with layered hydroxyl sulfate as precursor. J. Alloys Compd. 603(1), 28 (2014).
14. Ohkubo, K. and Shigeta, T.: Absolute fluorescent quantum efficiency of NBS phosphor standard samples. J. Illum. Eng. Inst. Japan 83, 87 (1999).
15. Wang, L., Wang, X.J., Kohsei, T., Yoshimura, K., Izumi, M., Hirosaki, N., and Xie, R-J.: Highly efficient narrow-band green and red phosphors enabling wider color-gamut LED backlight for more brilliant displays. Opt. Express 23(22), 28707 (2015).
16. Geng, F.X., Ma, R.Z., Matsushita, Y., Liang, J.B., Michiue, Y., and Sasaki, T.: Structural study of a series of layered rare-earth hydroxide sulfates. Inorg. Chem. 50(40), 6667 (2011).
17. Shannon, R.D.: Revised effective ionic radii and systematic studies of inter atomic distances in halides and chaleogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751 (1976).
18. Shoji, M. and Sakurai, K.: A versatile scheme for preparing single-phase yttrium oxysulfate phosphor. J. Alloys Compd. 426(1–2), 244 (2006).
19. Gadsden, J.A.: Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworth, Newton, MA, 1975); pp. 15, 27.
20. Imanaka, N., Masui, T., and Kato, Y.: Preparation of the cubic-type La2O3 phase by thermal decomposition of LaI3 . J. Solid State Chem. 178(1), 395 (2005).
21. Li, L. and Zhang, S.Y.: Dependence of charge transfer energy on crystal structure and composition in Eu3+-doped compounds. J. Phys. Chem. B 110(43), 21438 (2006).
22. Đorđević, V., Antićn, Ž., Nikolić, M.G., and Dramićanin, M.D.: Comparative structural and photoluminescent study of Eu3+-doped La2O3 and La(OH)3nanocrystallinepowders. J. Phys. Chem. Solids 75(2), 276 (2014).
23. Li, J.G. and Sakka, Y.: Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12). Sci. Technol. Adv. Mater. 16(1), 014902 (2015).
24. Dhananjaya, N., Nagabhushana, H., Nagabhushana, B.M., Rudraswamy, B., Shivakumara, C., and Chakradhar, R.P.S.: Hydrothermal synthesis, characterization and Raman studies of Eu3+ activated Gd2O3 nanorods. Phys. B 406(9), 1639 (2011).
25. Souza, A.S. and Couto Dos Santos, M.A.: The J-mixing effect in Ln3+ ions crystal field levels. Chem. Phys. Lett. 521, 138 (2012).
26. Ji, H.P., Huang, Z.H., Xia, Z.G., Molokeev, M.S., Jiang, X.X., Lin, Z.S., and Atuchin, V.V.: Comparative investigations of the crystal structure and photoluminescence property of eulytite-type Ba3Eu(PO4)3 and Sr3Eu(PO4)3 . Dalton Trans. 44(16), 7679 (2015).
27. Inokuti, M. and Hirayama, F.: Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43(6), 1978 (1965).
28. Lu, B., Li, J.G., and Sakka, Y.: Controlled processing of (Gd,Ln)2O3:Eu (Ln = Y, Lu) red phosphor particles and compositional effects on photoluminescence. Sci. Technol. Adv. Mater. 14(6), 064202 (2013).
29. Huang, S. and Lou, L.: Concentration dependence of sensitizer fluorescence intensity in energy transfer. Chin. J. Lumin. 11(1), 1 (1990).
30. Dai, Q.L., Song, H.W., Wang, M.Y., Bai, X., Dong, B., Qin, R.F., Qu, X.S., and Zhang, H.: Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J. Phys. Chem. C 112(49), 19399 (2008).
31. Ozawa, L.: Determination of self-concentration quenching mechanisms of rare earth luminescence from intensity measurements on powdered phosphor screens. J. Electrochem. Soc. 126(1), 106 (1979).
32. Zhang, L., Lu, Z., Yang, H., Han, P.D., Xu, N.C., and Zhang, Q.T.: Preparation of Dy3+-activated strontium orthosilicate (Sr2SiO4:Dy3+) phosphors and its photoluminescent properties. J. Alloys Compd. 512(1), 5 (2012).
33. Upasani, M., Butey, B., and Moharil, S.V.: Synthesis, characterization and optical properties of Y3Al5O12:Ce phosphor by mixed fuel combustion synthesis. J. Alloys Compd. 650(1), 858 (2015).
34. Fouassier, C., Saubat, B., and Hagenmuller, P.: Self-quenching of Eu3+ and Tb3+ luminescence in LaMgB5O10: A host structure allowing essentially one-dimensional interactions. J. Lumin. 23(3–4), 405 (1981).


Type Description Title
Supplementary materials

Wang supplementary material
Figures S1-S5 and Table S1

 Word (628 KB)
628 KB

Photoluminescence of (La,Eu)2O2SO4 red-emitting phosphors derived from layered hydroxide

  • Xuejiao Wang (a1), Ji-Guang Li (a1), Qi Zhu (a2) and Xudong Sun (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed