Skip to main content Accessibility help
×
Home

The photocathodic behavior of hierarchical ZnO/hematite hetero nanoarchitectures

  • Debajeet K. Bora (a1)

Abstract

The photocathodic current density of ZnO/hematite hetero nanoarchitectures electrode has been reported in the current investigation. The electrode was obtained with a cheap and two-step hydrothermal functionalization of pristine silicon doped hematite film. The optical, structural, and morphological properties of the electrodes have been studied in detail and it is found that the ZnO functionalization of hematite changes its crystallographic properties by decreasing the Bragg peak intensity ratio for (104) planes. The morphology obtained in this case is unique in the sense that it does not cover the original hematite film and is formed in an isolated manner. Finally, employing a qualitative energy band gap model for mixed metal oxides energy levels has identified the photocathodic properties of the electrode. Here it is found that the photocathodic properties of the electrode are much higher when an electron transfer takes place from the conduction band of ZnO into the electrolyte while hole generated in ZnO is transferred back to hematite but it also degrades the structures after running photoanodic current density sweep. That points to the decrease of water oxidation behavior of hematite in conjunction with ZnO.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: Debajeet1@hotmail.com, Debajeet.bora@empa.ch

References

Hide All
1. Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
2. Sartoretti, C.J., Alexander, B.D., Solarska, R., Rutkowska, I.A., and Augustynski, J.: Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. J. Phys. Chem. B 109, 1368513692 (2005).
3. Watanabe, A. and Kozuka, H.: Photoanodic properties of Sol–Gel-derived Fe2O3 thin films containing dispersed gold and silver particles. J. Phys. Chem. B 107, 1271312720 (2003).
4. Duret, A. and Gratzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 1718417191 (2005).
5. Tahir, A.A., Upul Wijayantha, K.G., Saremi-Yarahmadi, S., Mazhar, M., and Mckee, V.: Nanostructured α-Fe2O3 thin films for photoelectrochemical hydrogen generation. Chem. Mater. 21, 37633772 (2009).
6. Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 60866087 (2009).
7. An, Z., Zhang, J., Pan, S., and Yu, F.: Facile template-free synthesis and characterization of elliptic α-Fe2O3 superstructures. J. Phys. Chem. C 113, 80928096 (2009).
8. Wen, X., Wang, S., Ding, Y., Lin Wang, Z., and Yang, S.: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215220 (2005).
9. Jia, C., Sun, L., Yan, Z., You, L., Luo, F., Han, X., Pang, Y., Zhang, Z., and Yan, C.: Single-crystalline iron oxide nanotubes. Angew. Chem., Int. Ed. 44, 43284333 (2005).
10. Chueh, Y.L., Lai, M.W., Liang, Q., Chou, L.J., and Wang, Z.L.: Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor -solid process. Adv. Funct. Mater. 16, 22432251 (2006).
11. Tang, B., Wang, G., Zhou, L., Ge, J., and Cui, L.: Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 45, 51965200 (2006).
12. Zhu, L.P., Xiao, H.M., Liu, X.M., and Fu, S.Y.: Template-free synthesis and characterization of novel 3D urchin-like α-Fe2O3 superstructures. J. Mater. Chem. 16, 17941797 (2006).
13. Cao, M., Liu, T., Gao, S., Sun, G., Wu, X., Hu, C., and Wang, Z.L.: Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angew. Chem., Int. Ed. 44, 41974201 (2005).
14. Vayssieres, L.: An aqueous solution approach to advanced metal oxide arrays on substrates. Appl. Phys. A: Mater. Sci. Process. 89(20), 18 (2007).
15. Klingshirn, C.: Zno: Material, physics and applications. ChemPhysChem 8, 782 (2007).
16. Tributsch, H. and Calvin, M.: Electrochemistry of excited molecules: Photo-electrochemical reactions of chlorophylls. Photochem. Photobiol. 14, 95 (1971).
17. Yang, X., Wolcott, A., Wang, G., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z., and Li, Y.: Nitrogen-doped ZnO nanowire arrays for photoelectrochemical Water Splitting. Nano Lett. 9, 2331 (2009).
18. Guo, M., Diao, P., and Cai, S.: Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl. Surf. Sci. 249, 71 (2005).
19. Wolcott, A., Smith, W.A., Kuykendall, T.R., Zhao, Y., and Zhang, J.Z.: Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv. Funct. Mater. 19, 1849 (2009).
20. Srikant, V. and Clarkea, D.R.: On the optical band gap of zinc oxide. J. Appl. Phys. 83, 5447 (1998).
21. Yan, Y., Ahn, K.S., Shet, S., Deutsch, T., Huda, M., Wei, S.H., Turner, J., and Al-Jassim, M.M.: Band gap reduction of ZnO for photoelectrochemical splitting of water. Proc. SPIE 6650, 66500H (2007).
22. Mansoor, M.A., Ehsan, M.A., McKee, V., Huang, N., Ebadi, M., Arifin, Z., Basiruna, W.J., and Mazhar, M.: Hexagonal structured Zn(1−x)Cd x O solid solution thin films: synthesis, characterization and applications in photoelectrochemical water splitting. J. Mater. Chem. A 1, 5284 (2013).
23. Shet, S., Ahn, K., Deutsch, T., Wang, H., Ravindra, N., Yan, Y., Turner, J., and Al-Jassim, M.: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting. J. Mater. Res. 25, 69 (2010).
24. Dom, R., Baby, L.R., Kim, H.G., and Borse, P.H.: Enhanced solar photoelectrochemical conversion efficiency of ZnO: Cu electrodes for water-splitting application. Int. J. Photoenergy 2013, 1 (2013).
25. Chen, H.M., Chen, C.K., Chang, Y., Tsai, C., Liu, R., Hu, S., Chang, W., and Chen, K.: Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew. Chem., Int. Ed. 49, 5966 (2010).
26. Keis, K., Magnusson, E., Lindström, H., Lindquist, S., and Hagfeldt, A.: A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51 (2002).
27. Bahadur, L. and Kushwaha, S.: Highly efficient nanocrystalline ZnO thin films prepared by a novel method and their application in dye-sensitized solar cells. Appl. Phys. A: Mater. Sci. Process. 109, 655 (2012).
28. Nonomura, K., Yoshida, T., Schlettwein, D., and Minoura, H.: One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties. Electrochim. Acta 48, 3071 (2003).
29. Wei, Y., Ke, L., Kong, J., Liu, H., Jiao, Z., Lu, X., Du, H., and Sun, X.W.: Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology 23, 235401 (2012).
30. Schrier, J., Demchenko, D.O., and Wang, L.: Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett. 7, 23772382 (2007).
31. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
32. Bora, D.K. and Braun, A.: Solution processed transparent nanoparticulate ZnO thin film electrode for photoelectrochemical water oxidation. RSC Adv. 4, 2356223570 (2014).
33. Saarenpää, H., Niemi, T., Tukiainen, A., Lemmetyinen, H., and Tkachenko, N.: Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices. Sol. Energ. Mater. Sol. Cells 94, 3791383 (2010).
34. Achouri, F., Corbel, S., Aboulaich, A., Balan, L., Ghrabi, A., Said, M.B., and Schneider, R.: Aqueous synthesis and enhanced photocatalytic activity of ZnO/Fe2O3 heterostructures. J. Phys. Chem. Solids 75, 10811087 (2014).
35. Janet, C.M., Navaladian, S., Viswanathan, B., Varadarajan, T.K., and Viswanath, R.P.: Heterogeneous wet chemical synthesis of superlattice-type hierarchical ZnO architectures for concurrent H2 production and N2 reduction. J. Phys. Chem. C 114, 26222632 (2010).
36. Guo, M., Diao, P., and Cai, S.: Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties. Appl. Surf. Sci. 249, 7175 (2005).
37. Guo, M., Diao, P., Wang, X., and Cai, S.: The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. J. Solid State Chem. 178, 32103215 (2005).
38. Bora, D.K.: Fabrication of silicon doped hematite photoelectrode with enhanced photocurrent density via solution processing of an in-situ TEOS modified precursor. Mater. Sci. Semicond. Process. 31, 728738 (2015).
39. Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., and Constable, E.C.: Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23, 20512061 (2011).
40. Bora, D.K., Braun, A., Steifel, M., Erni, R., Müller, U., Döbli, M., and Constable, E.C.: Hematite -NiO/α-Ni(OH)2 heterostructure photoanodes with high electrocatalytic current density and charge storage capacity. Phys. Chem. Chem. Phys. 15, 1264812659 (2013).
41. Samanta, P.K., Patra, S.K., and Chaudhuri, P.R.: violet emission from flower-like bundle of ZnO nanosheets. Phys. E 41, 664 (2009).
42. Nakamura, T. and Kurokawa, H.: Preparation of monodispersed haematite particles by two-step hydrolysis of ferric chloride aqueous solutions. J. Mater. Sci. 30, 471 (1995).
43. Warschkow, O., Ellis, D.E., Hwang, J., Mansourian-Hadavi, N., and Mason, T.O.: Defects and charge transport near the hematite (0001) surface: An atomistic study of oxygen vacancies. J. Am. Ceram. Soc. 85, 213220 (2002).
44. Zhang, X., Li, H., Wang, S., Fan, F.F., and Bard, A.J.: Improvement of hematite as photocatalyst by doping with tantalum. J. Phys. Chem. C 118(30), 1684216850 (2014).
45. Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638641 (2008).
46. Thankappan, A., Hari, M., Mathew, S., Ani Joseph, S., Erni, R., Bora, D.K., Braun, A., and Nampoori, V.P.N.: Synthesis of monocrystalline zinc oxide microrods by wet chemical method for light confinement applications. Phys. E 44, 21182123 (2012).
47. Rajeswar, K.: Fundamentals of semiconductors electrochemsitry and photoelectrochemistry. In Encyclopedia of Electrochemistry, Semiconductor Electrodes and Photoelectrochemistry, Vol. 6, Bard, A.J., Stratmann, M. and Licht, S., eds. (Wiley, Germany, 2002).
48. Morisaki, J., Hariya, M., and Yazawa, K.: Anomalous photoresponse of n–TiO2 electrode in a photoelectrochemical cell. Appl. Phys. Lett. 30, 7 (1977).
49. Khan, S.U.M. and Om Bockris, J.: A model for electron transfer at the illuminated p-type semiconductor-solution interface. J. Phys. Chem. 88, 25042515 (1984).
50. Uosaki, K. and Kita, H.: Mechanistic study of photoelectrochemical reactions at a p–GaP electrode. J. Electrochem. Soc. 128, 2154 (1981).
51. Wang, H., Wang, T., Wang, X., Liu, R., Wang, B., Wang, H., Xu, Y., Zhang, J., and Duan, J.: Double-shelled ZnO/CdSe/CdTe nanocable arrays for photovoltaic applications: microstructure evolution and interfacial energy alignment. J. Mater. Chem. 22, 1253212537 (2012).

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Bora supplementary material
Supporting Information

 Word (410 KB)
410 KB

The photocathodic behavior of hierarchical ZnO/hematite hetero nanoarchitectures

  • Debajeet K. Bora (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.