Skip to main content Accessibility help
×
Home

Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films

  • Shuai Li (a1), Qiang Tao (a1), Da-Wei Li (a1), Kun Liu (a1) and Qing-Yu Zhang (a1)...

Abstract

Using nanoparticulate TiO2 films, the photocatalytic growth of Ag nanoparticles (NPs) in the AgNO3 aqueous solution has been studied in terms of reduction, nucleation, and coalescence. It was proved that Ag primary particles were formed in a growth time of <1 s after the photocatalysis started. The growth dynamics was found to be critical for isotropic and anisotropic growth of Ag NPs, depending on the AgNO3 concentration and surface properties of TiO2 films. In the AgNO3 solutions of ≤300 mg/L, the isotropic growth dominates the growth dynamic behavior, producing irregularly spherical Ag NPs. In the AgNO3 solutions of ≥400 mg/L, the increased reduction rate promotes the formation of Ag nanoplates in the product. Ostwald ripening and oriented attachment were suggested to be the mechanisms dominating the isotropic and anisotropic growth, respectively. A photocatalytic growth model of Ag NPs was proposed by taking Ag atom and Ag+ ion diffusion into consideration. The plasmonic properties of the Ag–TiO2 films were studied in terms of extinction, surface enhanced Raman scattering, and fluorescence enhancement.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: qyzhang@dlut.edu.cn

References

Hide All
1. Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).
2. Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).
3. Es-Souni, M., Es-Souni, M., Habouti, S., Pfeiffer, N., Lahmar, A., Dietze, M., and Solterbeck, C-H.: Brookite formation in TiO2-Ag nanocomposites and visible light induced templated growth of Ag nanostructures in TiO2 . Adv. Funct. Mater. 20, 377 (2010).
4. Awazu, K., Fujimaki, M., Rockstuhl, C., and Tominaga, J.: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J. Am. Chem. Soc. 130, 1676 (2008).
5. Hou, W. and Cronin, S.B.: A review of surface plasmon resonance-enhanced photocatalysis. Adv. Funct. Mater. 23, 1612 (2013).
6. Tian, Y. and Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632 (2005).
7. Liu, Z., Hou, W., Pavaskar, P., Aykol, M., and Cronin, S.B.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11, 1111 (2011).
8. Ohko, Y., Tatsuma, T., Fujii, T., Naoi, K., Niwa, C., Kubota, Y., and Fujishima, A.: Multicolour photochromism of TiO2 films loaded with silver nanoparticles. Nat. Mater. 2, 29 (2003).
9. Tanahashi, I., Iwagishi, H., and Chang, G.: Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films. Mater. Lett. 62, 2714 (2008).
10. Li, D.W., Pan, L.J., Li, S., Liu, K., Wu, S.F., and Peng, W.: Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J. Phys. Chem. C 117, 6861 (2013).
11. Mills, A., Hill, G., Stewart, M., Graham, D., Smith, W.E., Hodgen, S., Halfpenny, P.J., Faulds, K., and Robertson, P.: Characterization of novel Ag on TiO2 films for surface-enhanced Raman scattering. Appl. Spectrosc. 58, 922 (2004).
12. Tanabe, I., Matsubara, K., Stridge, S.D., Kazuma, E., and Kelly, K.L.: Photocatalytic growth and plasmon resonance-assisted photoelectrochemical toppling of upright Ag nanoplates on a nanoparticulate TiO2 film. Chem. Commun. 24, 3621 (2009).
13. Matsubara, K., Kelly, K.L., Sakai, N., and Tatsuma, T.: Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals. J. Mater. Chem. 19, 5526 (2009).
14. Kazuma, E., Matsubara, K., Kelly, K.L., Sakai, N., and Tatsuma, T.: Bi- and uniaxially oriented growth and plasmon resonance properties of anisotropic Ag nanoparticles on single crystalline TiO2 surfaces. J. Phys. Chem. C 113, 4758 (2009).
15. Viswanatha, R., Santra, P.K., Dasgupta, C., and Sarma, D.D.: Growth mechanism of nanocrystals in solution: ZnO, a case study. Phys. Rev. Lett. 98, 255501 (2007).
16. Moores, A. and Goettmann, F.: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 30, 1121 (2006).
17. Ung, T., Liz-Marza, L.M., and Mulvaney, P.: Optical properties of thin films of Au@SiO2 particles. J. Phys. Chem. B 105, 3441 (2001).
18. Jin, R., Cao, Y.C., Hao, E., Me, G.S., Schatz, G.C., and Mirkin, C.A.: Controlling anisotropic nanoparticles growth through plasmon excitation. Science 425, 487 (2004).
19. Sakai, Y., Tanabe, I., and Tatsuma, T.: Orientation-selective removal of upright Ag nanoplates from a TiO2 film. Nanoscale 3, 4101 (2011).
20. Tanabe, I., Matsubara, K., Sakai, N., and Tatsuma, T.: Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film. J. Phys. Chem. C 115, 1695 (2011).
21. Li, S., Tao, Q., Li, D.W., and Zhang, Q.Y.: Controlled anisotropic growth of Ag nanoparticles on oil-decorated TiO2 films with photocatalytic reduction method. J. Mater. Res. 29, 2497 (2014).
22. Ohring, M.: Materials Science of Thin Films: Deposition and Structure (Academic Press, San Diego, 2002).
23. Yin, S., Huang, F., Zhang, J., Zheng, J., and Lin, Z.: The effects of particle concentration and surface charge on the oriented attachment growth kinetics of CdTe nanocrystals in H2O. J. Phys. Chem. C 115, 10357 (2011).
24. Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).
25. Prodan, E., Radloff, C., Halas, N.J., and Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).
26. Beck, F.J., Verhagen, E., Mokkapati, S., Polman, A., and Catchpole, K.R.: Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates. Opt. Express 19(S2), A146 (2011).
27. Hildebrandt, P. and Stockburger, M.: Surface-enhanced resonance Raman-spectroscopy of rhodamine-6G adsorbed on colloidal silver. J. Phys. Chem. 88, 5935 (1984).
28. Tao, Q., Li, S., Zhang, Q.Y., Kang, D.W., Yang, J.S., Qiu, W.W., and Liu, K.: Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles. Mater. Res. Bull. 54, 6 (2014).
29. Garcia-Vidal, F.J. and Pendry, J.B.: Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 11631166 (1996).
30. Yang, Y., Matsubara, S., Xiong, L.M., Hayakawa, T., and Nogami, M.: Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J. Phys. Chem. C 111, 90959104 (2007).
31. Lakowicz, J.R., Geddes, C.D., Gryczynski, I., Malicka, J., Gryczynski, Z., Aslan, K., Lukomska, J., Matveeva, E., Zhang, J., Badugu, R., and Huang, J.J.: Advances in surface-enhanced fluorescence. J. Fluoresc. 14, 425 (2004).
32. Lakowicz, J.R.: Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission. Anal. Biochem. 337, 171 (2005).

Keywords

Type Description Title
WORD
Supplementary materials

Li et al. supplementary material
Supplementary figures

 Word (4.1 MB)
4.1 MB

Photocatalytic growth and plasmonic properties of Ag nanoparticles on TiO2 films

  • Shuai Li (a1), Qiang Tao (a1), Da-Wei Li (a1), Kun Liu (a1) and Qing-Yu Zhang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed