Skip to main content Accessibility help
×
Home

Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays

  • Jae Kyeong Jeong (a1)

Abstract

Metal oxide optoelectronics is an emerging field that exploits the intriguing properties of the ns orbital-derived isotropic band structure as a replacement for traditional silicon-based electronics in advanced active-matrix information displays. Although the device performance of metal oxide thin film transistors (TFTs) has been substantially improved, the device reliability against external light and gate bias stress remains a critical issue. This paper provides a literature review of light-induced gate bias stress instability in metal oxide TFTs and explain the importance of photo-bias instability in the applications of metal oxide TFTs to optoelectronic device. The rationale of threshold voltage (Vth) instability under the negative bias illumination stress (NBIS) condition is discussed in detail. The charge trapping/injection model, oxygen vacancy photoionization model, and ambient interaction model are described as plausible degradation mechanisms. Finally, the possible approaches to prevent NBIS-induced Vth instability are proposed based on an understanding of the NBIS instability.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jkjeong@inha.ac.kr

References

Hide All
1.Matsueda, Y.: Required characteristics of TFTs for next generation flat panel display backplanes. Digest of International Transistor Conference, Tokyo, Japan, January 28–29, 2010, p. 314.
2.Jackson, W.B. and Moyer, M.D.: Creation of near-interface defects in hydrogenated amorphous silicon-silicon nitride heterojunctions: The role of hydrogen. Phys. Rev. B 36, 62176220 (1987).
3.Powell, M.J.: Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors. Appl. Phys. Lett. 43, 597599 (1983).
4.Jahinuzzaman, M., Sultana, A., Sakariya, K., Servati, P., and Nathan, A.: Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress. Appl. Phys. Lett. 87, 023502 (2005).
5.Theiss, S.D. and Wagner, S.: Amorphous silicon thin-film transistors on steel foil substrates. IEEE Electron Device Lett. 17, 578580 (1996).
6.Serikawa, T. and Omata, F.: High-quality polycrystalline Si TFTs fabricated on stainless-steel foils by using sputtered Si films. IEEE Trans. Electron Devices 49, 820825 (2002).
7.Jeong, J.K., Jin, D.U., Shin, H.S., Lee, H.J., Kim, M., Ahn, T.K., Lee, J., Mo, Y.G., and Kim, H.D.: Flexible full-color AMOLED on ultra-thin metal foil. IEEE Electron Device Lett. 28, 389391 (2007).
8.Im, J.S., Kim, H.J., and Thompson, M.O.: Phase transformation mechanism involved in excimer laser crystallization of amorphous silicon films. Appl. Phys. Lett. 63, 19691971 (1993).
9.Fortunato, E., Barquinha, P., and Martins, R.: Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 24, 29452986 (2012).
10.Park, J.S., Maeng, S-J., Kim, H-S., and Park, J-S.: Review of recent development in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 520, 16791693 (2012).
11.Kwon, J.Y., Lee, D.J., and Kim, K.B.: Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7, 111 (2011).
12.Kamiya, T., Nomura, K., and Hosono, H.: Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305_1–23 (2010).
13.Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488492 (2004).
14.Hosono, H.: Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application. J. Non-Cryst. Solids 352, 851858 (2006).
15.Iwasaki, T., Itagaki, N., Den, T., Kumomi, H., Nomura, K., Kamiya, T., and Hosono, H.: Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system. Appl. Phys. Lett. 90, 242114_1–3 (2007).
16.Jeong, J.K., Jeong, J.H., Yang, H.W., Park, J.S., Mo, Y.G., and Kim, H.D.: High performance thin film transistors with co-sputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 91, 113505_1–3 (2007).
17.Lee, H.N., Kyung, J., Sung, M.C., Kim, D.Y., Kang, S.K., Kim, S.J., Kim, C.N., Kim, H.G., and Kim, S.T.: Oxide TFT with multilayer gate insulator for backplane of AMOLED device. J. Soc. Inf. Disp. 16, 265272 (2008).
18.Jeong, J.K., Jeong, J.H., Yang, H.W., Ahn, T.K., Kim, M., Kim, K.S., Gu, B.S., Chung, H.J., Park, J.S., Mo, Y.G., Kim, H.D., and Chung, H.K.: 12.1-in. WXGA AMOLED display driven by InGaZnO thin-film transistors. J. Soc. Inf. Disp. 17, 95100 (2009).
19.Kim, M., Jeong, J.H., Lee, H.J., Ahn, T.K., Shin, H.S., Park, J.S., Jeong, J.K., Mo, Y.G., and Kim, H.D.: High mobility bottom gate InGaZnO thin-film transistors with SiOx etch stopper. Appl. Phys. Lett. 90, 212114_1–3 (2007).
20.Sato, A., Abe, K., Hayashi, R., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: Amorphous In-Ga-Zn-O coplanar homojunction thin-film transistor. Appl. Phys. Lett. 94, 133502_1–3 (2009).
21.Morosawa, N., Ohshima, Y., Morooka, M., Arai, T., and Sasaoka, T.: A novel self-aligned top-gate oxide TFT for AM-OLED displays. SID Symposium Digest of Technical Papers 42, 479–482 (2011).
22.Ito, M., Miyazaki, C., Ishizaki, M., Kon, M., Ikeda, N., Okubo, T., Matsubara, R., Hatta, K., Ugajin, Y., and Sekine, N.: Application of amorphous oxide TFT to electrophoretic display. J. Non-Cryst. Solids 354(19–25), 27772782 (2008).
23.Lee, J.H., Kim, D.H., Yang, D.J., Hong, S.Y., Yoon, K.S., Hong, P.S., Jeong, C.O., Park, H.S., Kim, S.Y., Lim, S.K., and Kim, S.S.: World’s largest (15-inch) XGA AMLCD panel using IGZO TFT. SID International Symposium Digest Technical Papers 39, 625–628 (2008).
25.Shin, J-H., Lee, J-S., Hwang, C-S., Park, S-H.K., Cheong, W-S., Ryu, M., Byun, C-W., Lee, J-I., and Chu, H.Y.: Light effects on the bias stability of transparent ZnO thin film transistors. ETRI J. 31, 6264 (2009).
26.Jeong, J.K.: The status and perspectives of metal oxide thin film transistors for active matrix flexible displays. Semicond. Sci. Technol. 26, 034008_1–10 (2011).
27.Cross, R.B.M. and De Souza, M.M.: Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett. 89, 263513_1–3 (2006).
28.Suresh, A. and Muth, J.F.: Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 92, 033502_1–3 (2008).
29.Nomura, K., Kamiya, T., Yanagi, H., Ikenaga, E., Yang, K., Kobayashi, K., Hirano, M., and Hosono, H.: Subgap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive x-ray photoelectron spectroscopy. Appl. Phys. Lett. 92, 202117_1–3 (2008).
30.Ghaffazadeh, K., Nathan, A., Roberson, J., Kim, S., Jeong, S., Kim, C., Chung, U-I., and Lee, J.H.: Instability in threshold voltage and subthreshold behavior in Hf-In-Zn-O thin film transistors induced by bias-and light-stress. Appl. Phys. Lett. 97, 113504_1–3 (2010).
31.Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles, 3rd ed. (McGraw Hill, New York, 2003), Chap. 14.
32.Kim, S., Kim, S., Kim, C., Park, J., Song, I., Jeon, S., Ahn, S-E., Park, J-S., and Jeong, J.K.: The influence of visible light on gate bias instability of In-Ga-Zn-O thin film transistors. Solid-State Electron. 62, 7781 (2011).
33.Chung, Y.J., Kim, J.H., Kim, U.K., Cho, D-Y., Jung, H.S., Jeong, J.K., and Hwang, C.S.. Direct observation of a hole current in amorphous oxide semiconductor under illumination. Electrochem. Solid-State Lett. 14, G35G37 (2011).
34.Ji, K.H., Kim, J-I., Jung, H.Y., Park, S.Y., Choi, R., Kim, U.K., Hwang, C.S., Lee, D., Hwang, H., and Jeong, J.K.: Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors. Appl. Phys. Lett. 98, 103509_1–3 (2011).
35.Ryu, B., Noh, H-K., Choi, E-A., and Chang, K.J.: O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors. Appl. Phys. Lett. 97, 022108_1–3 (2010).
36.Yang, S., Cho, D-H., Ryu, M.K., Park, S-H.K., Hwang, C-S., Jang, J., and Jeong, J.K.: Improvement in the photon-induced bias stability of Al-Sn-Zn-In-O thin film transistors by adopting AlOx passivation layer. Appl. Phys. Lett. 96, 213511_1–3 (2010).
37.Staebler, D.L. and Wronski, C.R.: Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51, 32623268 (1980).
38.Stutzmann, M., Jackson, W.B., and Tsai, C.C.: Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study. Phys. Rev. B 32, 2347 (1985).
39.Kagan, C.R. and Andry, P.: Thin Film Transistors (Dekker, New York, 2003), Chap. 3, p. 104.
40.Douglas, E.A., Scheurmann, A., Davies, R.P., Gila, B.P., Cho, H., Craciun, V., Lambers, E.S., Pearton, S.J., and Ren, F.: Measurement of SiO2/InZnGaO4 heterojunction band offsets by x-ray photoelectron spectroscopy. Appl. Phys. Lett. 98, 242110_1–3 (2011).
41.Moon, Y-K., Lee, S., Kim, W-S., Kang, B-W., Jeong, C-O., Lee, D-H., and Park, J-W.: Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator. Appl. Phys. Lett. 95, 013507_1–3 (2009).
42.Ji, K.H., Kim, J-I., Mo, Y-G., Jeong, J.H., Yang, S., Hwang, C-S., Park, S-H.K., Ryu, M-K., Lee, S-Y., and Jeong, J.K.; Comparative study on light-induced bias stress instability of IGZO transistors with SiNx and SiO2 gate dielectrics. IEEE Electron Device Lett. 31, 14041406 (2010).
43.Ji, K.H., Kim, J-I., Jung, H.Y., Park, S.Y., Mo, Y-G., Jeong, J.H., Kwon, J-Y., Ryu, M-K., Lee, S.Y., Choi, R., and Jeong, J.K.: The effect of density-of-state on the temperature and gate bias-induced instability of InGaZnO thin film transistor. J. Electrochem. Soc. 157, H983H986 (2010).
44.Tan, Y-N., Chim, W-K., Cho, B.J., and Choi, W-K.: Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer. IEEE Trans. Electron Devices 51, 11431145 (2004).
45.Janotti, A. and Van de Walle, C.G.: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102_1–3 (2005).
46.Lany, S. and Zunger, A.: Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductor. Phys. Rev. B 72, 035215_1–13 (2005).
47.Janotti, A. and Van de Walle, C.G.: Native point defects in ZnO. Phys. Rev. B 76, 165202_1–22 (2007).
48.Janotti, A. and Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501_1–27 (2009).
49.Ghaffazadeh, K., Nathan, A., Roberson, J., Kim, S., Jeong, S., Kim, C., Chung, U-I., and Lee, J.H.: Persistent photoconductivity in Hf-In-Zn-O thin film transistors. Appl. Phys. Lett. 97, 143510_1–3 (2010).
50.Chowdhury, M.D.H., Migliorato, P., and Jang, J.: Light induced instabilities in amorphous indium-gallium-zinc-oxide thin-film transistors. Appl. Phys. Lett. 97, 173506_1–3 (2010).
51.Omura, H., Kumomi, H., Nomura, K., Kamiya, T., Hirano, M., and Hosono, H.: First-principles study of native point defects in crystalline indium gallium zinc oxide. J. Appl. Phys. 105, 093712_1–8 (2009).
52.Oh, H., Yoon, S-M., Ryu, M.K., Hwang, C-S., Yang, S., and Park, S-H.K.: Photon-accelerated negative bias instability involving subgap states creation in amorphous In-Ga-Zn-O thin film transistor. Appl. Phys. Lett. 97, 183502_1–3 (2010).
53.Oh, H., Park, S-H.K., Hwnag, C-S., Yang, S., and Ryu, M.K.: Enhanced bias illumination stability of oxide thin film transistor through insertion of ultrathin positive charge barrier into active material. Appl. Phys. Lett. 99, 022105_1–3 (2011).
54.Oh, S., Yang, B.S., Kim, Y.J., Oh, M.S., Jang, M., Yang, H., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Anomalous behavior of negative bias illumination stress instability in an indium zinc oxide transistor: A cation combinatorial approach. Appl. Phys. Lett. 101, 092107_1–5 (2012).
55.Migliorato, P., Chowdhury, M.D.H., Um, J.G., Seok, M., and Jang, J.: Light/negative bias stress instabilities in indium gallium zinc oxide thin film transistors explained by creation of a double donor. Appl. Phys. Lett. 101, 123502_1–5 (2012).
56.Nahm, H-H., Kim, Y-S., and Kim, D.H.: Instability of amorphous oxide semiconductors via carrier-mediated structural transition between disorder and peroxide state. Phys. Status Solidi B 249, 12771281 (2012).
57.Lee, D.H., Kawamura, K., Nomura, K., Kamiya, T., and Hosono, H.: Large photoresponse in amorphous In-Ga-Zn-O and origin of reversible and slow decay semiconductor devices, materials, and processing. Electrochem. Solid-State Lett. 13, H324H327 (2010).
58.Chowdhury, M.D.H., Migliorato, P., and Jang, J.: Time-temperature dependence of positive gate bias stress and recovery in amorphous indium-gallium-zinc-oxide thin-film-transistors. Appl. Phys. Lett. 98, 153511_1–3 (2011).
59.Xu, J., Pan, Q., Shun, Y., and Tian, Z.: Grain size control and gas sensing properties of ZnO gas sensor. Sens. Actuators, B 66(1–3), 277279 (2000).
60.Shishiyanu, S.T., Shishiyanu, T.S., and Lupan, O.I.: Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor. Sens. Actuators, B 107, 379386 (2005).
61.Kang, D., Lim, H., Kim, C., Song, I., Park, J., Park, Y., and Chung, J.: Amorphous gallium indium zinc oxide thin film transistors: Sensitive to oxygen molecules. Appl. Phys. Lett. 90, 192101_1–3 (2007).
62.Jeong, J.K., Yang, H.W., Jeong, J.H., Mo, Y.G., and Kim, H.D.: Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93, 123508_1–3 (2008).
63.Chen, Y.C., Chang, T.C., Li, H.W., Chen, S.C., Lu, J., Chung, W.F., Tai, Y.H., and Tseng, T.Y.: Bias-induced oxygen adsorption in zinc tin oxide thin film transistors under dynamic stress. Appl. Phys. Lett. 96, 262104_1-3 (2010).
64.Sung, S.Y., Choi, J.H., Han, U.B., Lee, C.K., Lee, J.H., Kim, J.J., Lim, W., Pearton, S.J., Norton, D.P., and Heo, Y.W.: Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Appl. Phys. Lett. 96, 102107_1–3 (2010).
65.Göpel, W.: Chemisorption and charge transfer at ionic semiconductor surfaces: Implication in designing gas sensors. Prog. Surf. Sci. 20, 9103 (1985).
66.Göpel, W.: Initial steps of interface formation: Surface states and thermodynamics. J. Vac. Sci. Technol. 16, 12291235 (1979).
67.Gorrn, P., Riedl, T., and Kowalsky, W.: Encapsulation of zinc tin oxide based thin film transistors. J. Phys. Chem. C 113, 1112611130 (2009).
68.Lee, K-H., Jung, J.S., Son, K.S., Park, J.S., Kim, T.S., Choi, R., Jeong, J.K., Kwon, J-Y., Koo, B., and Lee, S.: The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors. Appl. Phys. Lett. 95, 232106_1–3 (2009).
69.Yang, S., Cho, D-H., Ryu, M.K., Park, S-H.K., Hwang, C-S., Jang, J., and Jeong, J.K.: High performance Al-Sn-Zn-In-O thin film transistors: Impact of passivation layer on device stability. IEEE Electron Device Lett. 31, 144146 (2010).
70.Kwon, J-Y., Jung, J.S., Son, K.S., Lee, K-H., Park, J.S., Kim, T.S., Park, J-S., Choi, R., Jeong, J.K., Koo, B., and Lee, S.: The impact of gate dielectric materials on the light-induced bias instability in Hf-In-Zn-O thin film transistor. Appl. Phys. Lett. 97, 183503_1–3 (2010).
71.Kim, J.H., Kim, U.K., Chung, Y.J., and Hwang, C.S.: Improvement in the negative bias illumination temperature stress instability of In-Ga-Zn-O thin film transistors using an Al2O3 buffer layer. Phys. Status Solidi RRL 5(5–6), 178180 (2011).
72.Lee, C-K., Jung, H.Y., Park, S.Y., Son, B.G., Lee, C-K., Kim, H.J., Choi, R., Kim, D-H., Bae, J-U., Shin, W-S., and Jeong, J.K.: Suppression in negative bias illumination stress instability of zinc-tin oxide transistor by insertion of thermal TiOx film. IEEE Electron Device Lett. 34, 253255 (2013).
73.Park, S.Y., Ji, K.H., Kim, J-I., Jung, H.Y., Choi, R., Son, K.S., Ryu, M.K., Lee, S., and Jeong, J.K.: Improvement in the device performance of tin-doped indium oxide transistor by oxygen high pressure annealing at 150 °C. Appl. Phys. Lett. 100, 162108_1–4 (2012).
74.Son, K.S., Park, J.S., Kim, T.S., Kim, H-S., Seo, S-J., Kim, S-J., Seon, J-B., Ji, K.H., Jeong, J.K., Ryu, M.K., and Lee, S.: Improvement of photo-induced negative bias stability of oxide TFTs by reducing of sub-gap states related to oxygen vacancies. Appl. Phys. Lett. 102, 122108_1–4 (2013).
75.Yang, S., Ji, K.H., Kim, U.K., Hwang, C.S., Park, S-H.K., Hwang, C-S., Jang, J., and Jeong, J.K.: Suppression in the negative bias illumination instability of Zn-Sn-O transistor using oxygen plasma treatment. Appl. Phys. Lett. 99, 102103_1–3 (2011).
76.Yang, B.S., Park, S., Oh, S., Kim, Y.J., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Improvement of the photo-bias stability of the Zn-Sn-O field effect transistors by an ozone treatment. J. Mater. Chem. 22, 1099410998 (2012).
77.Seiyama, T.: Chemical Sensor Technology, Vol. 1 (Kodansha/Elsevier, Tokyo, Japan, 1988).
78.Yang, B.S., Huh, M.S., Oh, S., Lee, U.S., Kim, Y.J., Oh, M.S., Jeong, J.K., Hwang, C.S., and Kim, H.J.: Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn-Sn-O thin film transistors. Appl. Phys. Lett. 98, 122110_1–3 (2011).
79.Barin, I.: Thermochemical Data of Pure Substances, Part 2 (VCH, New York, 1989).
80.Kamiya, T., Nomura, K., and Hosono, H.: Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors. Appl. Phys. Lett. 96, 122103_1–3 (2010).
81.Nomura, K., Kamiya, T., Ohta, H., Ueda, K., Hirano, M., and Hosono, H.: Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films. Appl. Phys. Lett. 85, 19931995 (2004).
82.Nomura, K., Kamiya, T., and Hosono, H.: Highly stable amorphous In-Ga-Zn-O thin-film transistors produced by eliminating deep subgap defects. Appl. Phys. Lett. 99, 053505_1–3 (2011).
83.Park, J.S., Kim, T.S., Son, K.S., Lee, K.H., Maeng, W.J., Kim, H.S., Kim, E.S., Park, K.B., Seon, J.B., Choi, W., Ryu, M.K., and Lee, S.Y.: The influence of SiOx and SiNx passivation on the negative bias stability of Hf-In-Zn-O thin film transistors under illumination. Appl. Phys. Lett. 96, 262109_1–3 (2010).
84.Kim, H.J., Park, S.Y., Jung, H.Y., Son, B.G., Lee, C-K., Lee, C-K., Jeong, J.H., Mo, Y.G., Son, K.S., Ryu, M.K., Lee, S., and Jeong, J.K.: Role of incorporated hydrogen on performance and photo-bias instability of indium gallium zinc oxide thin film transistors. J. Phys. D: Appl. Phys. 46, 055104_1–6 (2013).
85.Gosain, D.P. and Tanaka, T.: Instability of amorphous indium gallium zinc oxide thin film transistors under light illumination. Jpn. J. Appl. Phys. 48, 03B018_1–5 (2009).
86.Ohara, H., Sasaki, T., Noda, K., Ito, S., Sasaki, M., Endo, Y., Yoshitomi, S., Sakata, J., Serikawa, T., and Yamazaki, S.: 4.0-inch active-matrix organic light-emitting diode display integrated with driver circuits using amorphous In-Ga-Zn-Oxide thin-film transistors with suppressed variation. Jpn. J. Appl. Phys. 49, 03CD02_1–6 (2010).

Related content

Powered by UNSILO

Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays

  • Jae Kyeong Jeong (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.