Skip to main content Accessibility help

Phase transformations in (111) Si after spherical indentation

  • Ayesha J. Haq (a1) and P.R. Munroe (a1)


Phase transformations in (111) Si after spherical indentation have been investigated by cross-sectional transmission electron microscopy. Even at an indentation load of 20 mN, a phase transformation zone including the high-pressure crystalline Si phases was observed within the residual imprints. The volume of the transformation zone, as well as that of the crystalline phases increased with the indentation load. Below the transformation zone, slip was found to occur on {311} planes rather than on {111} planes, usually observed on indentation of (100) Si. The distribution of defects was asymmetric, and for indentation loads up to 80 mN, their density was significantly lower than that reported for (100) Si. The experimental observations correlated well with modeling of the applied stress through ELASTICA.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon. Appl. Phys. Lett. 77, 3749 (2000).
2Bradby, J.E., Williams, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Mechanical deformation in silicon by micro-indentation. J. Mater. Res. 16, 1500 (2001).
3Zarudi, I. and Zhang, L.C.: Structure changes in monocrystalline silicon subjected to indentation-experimental findings. Tribol. Int. 32, 701 (1999).
4Zarudi, I., Zhang, L.C., and Swain, M.V.: Microstructure evolution in monocrystalline silicon in cyclic microindentations. J. Mater. Res. 18, 758 (2003).
5Zarudi, I., Zou, J., and Zhang, L.C.: Microstructures of phases in indented silicon: A high resolution characterization. Appl. Phys. Lett. 82, 874 (2003).
6Domnich, V. and Gogotsi, Y.: Phase transformations in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 (2002).
7Ge, D., Domnich, V., and Gogotsi, Y.: High-resolution transmission-electron-microscopy study of metastable silicon phases produced by nanoindentation. J. Appl. Phys. 93, 2418 (2003).
8Kailer, A., Gogotsi, Y.G., and Nickel, K.G.: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997).
9Domnich, V., Gogotsi, Y., and Dub, S.: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).
10Juliano, T., Gogotsi, Y., and Domnich, V.: Effect of indentation unloading conditions on phase transformation induced events in silicon. J. Mater. Res. 18, 1192 (2003).
11Juliano, T., Domnich, V., and Gogotsi, Y.: Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy. J. Mater. Res. 19, 3099 (2004).
12Saka, H., Shimatani, A., Suganuma, M., and Suprijadi, : Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Philos. Mag. A 82, 1971 (2002).
13Zarudi, I., Zhang, L.C., Cheong, W.C.D., and Yu, T.X.: The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters. Acta Mater. 53, 4795 (2005).
14Yan, J., Takahashi, H., Gai, X., Harada, H., Tamaki, J., and Kuriyagawa, T.: Load effects on the phase transformation of single-crystal silicon during nanoindentation tests. Mater. Sci. Eng., A 423, 19 (2006).
15Ruffell, S., Bradby, J.E., Williams, J.S., and Munroe, P.: Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007).
16Bradby, J.E., Williams, J.S., and Swain, M.V.: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B: Condens. Matter 67, 085205 (2003).
17Ruffell, S., Bradby, J.E., Fujisawa, N., and Williams, J.S.: Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization. J. Appl. Phys. 101, 083531 (2007).
18Gupta, M.C. and Ruoff, A.L.: Static compression of silicon in the [100] and in the [111] directions. J. Appl. Phys. 51, 1072 (1980).
19Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
20Saka, H. and Nagaya, G.: Plan-view transmission electron microscopy observation of a crack tip in silicon. Philos. Mag. Lett. 72, 251 (1995).
21Chudoba, T. and Schwarzer, N.: Elastica software package version 3,
22Malkow, T., Arce-Garcia, I., Kolitsch, A., Schneider, D., Bull, S.J., and Page, T.F.: Mechanical properties and characterisation of very thin CNx films synthesised by IBAD. Diamond Relat. Mater. 10, 2199 (2001).
24Berasategui, E.G. and Page, T.F.: The contact response of thin SiC-coated silicon systems-characterization by nanoindentation. Surf. Coat. Technol. 163–164, 491 (2003).
25Haberl, B., Bradby, J.E., Ruffell, S., Williams, J.S., and Munroe, P.: Phase transformations induced by spherical indentation in ion-implanted amorphous silicon. J. Appl. Phys. 100, 013520 (2006).
26Pharr, G.M., Oliver, W.C., and Harding, D.S.: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Mater. Res. 6, 1129 (1991).
27Weppelmann, E.R., Field, J.S., and Swain, M.V.: Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J. Mater. Res. 8, 830 (1993).
28Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L.: Crystal data for high-pressure phases of silicon. Phys. Rev. B: Condens. Matter 34, 4679 (1986).
29George, A.: Properties of Crystalline Silicon, edited by Hull, R. (Inspec, London, 1999), p. 104.
30Yoshino, M., Aoki, T., Chandrasekaran, N., Shirakashi, T., and Komanduri, R.: Finite element simulation of plane strain plastic-elastic indentation on single-crystal silicon. Int. J. Mech. Sci. 43, 313 (2001).
31Chudoba, T., Schwarzer, N., and Richter, F.: Steps towards a mechanical modeling of layered systems. Surf. Coat. Technol. 154, 140 (2002).
32Chudoba, T., Griepentrog, M., Duck, A., Schneider, D., and Richter, F.: Young's modulus measurements on ultra-thin coatings. J. Mater. Res. 19, 301 (2004).
33Gilman, J.J.: Shear-induced metallization. Philos. Mag. B 67, 207 (1993).


Phase transformations in (111) Si after spherical indentation

  • Ayesha J. Haq (a1) and P.R. Munroe (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed