Skip to main content Accessibility help

Phase transformation in ball-milled iron-rich Sm–Fe(–C) powders

  • O. Mao (a1), Z. Altounian (a1), J. O. Ström-Olsen (a1) and Jun Yang (a1)


Two intermetallic phases, R2Fe17 carbide and R2Fe14C, which are promising candidates for permanent magnets, are formed in the iron-rich R–Fe–C ternary alloy system (R = rare earths). Using x-ray diffraction and thermomagnetometry the phase formation, transformation, and thermodynamic relations between the two structures, prepared by high energy ball milling, are studied quantitatively for R = Sm. The results lead to a free energy diagram for the pseudobinary system of Sm2Fe17 and C. A maximum equilibrium carbon content, xc, has been established for the carbide Sm2Fe17Cx and its temperature dependence determined. Beyond the equilibrium concentration, Sm2Fe17Cx transforms into a mixture of Sm2Fe17Cxc, Sm2Fe14C, and α–Fe. Although not thermodynamically stable, Sm2Fe17Cx can still be formed through nonequilibrium processes by being kinetically favored over the stable phase(s). This feature is important for the production of Sm–Fe–C-based permanent magnets.



Hide All
1.Supermagnets, Hard Magnetic Materials, edited by Long, G. J. and Grandjean, F. (Kluwer Academic Publishers, The Netherlands, 1991).
2.Buschow, K. H. J., Rep. Prog. Phys. 54, 1123 (1991).
3.Stadelmaier, H. H. and Park, H. K., Z. Metallkd. 72, 417 (1981).
4.Buschow, K. J., de Mooij, D. B., and Denissen, C. J. M., Less-Common Met. 141, L15 (1988). Mooij, D.B. and Buschow, K.H.J, J. Less-Common Met. 142, 349 (1988).
6.Coey, J. M. D. and Sun, H., J. Magn. Magn. Mater. 87, L251 (1990).
7.Coey, J. M. D., Sun, H., Otani, Y., and Hurley, D. P. F., J. Magn. Magn. Mater. 98, 76 (1991).
8.Mao, O., Altounian, Z., Yang, J., and Ström-Olsen, J. O., J. Appl. Phys. 79, 5536 (1996).
9.Mao, O., Altounian, Z., Ström-Olsen, J. O., Yang, J., and Chen, X., IEEE Trans. Magn. 32, 4413 (1996).
10. The peritectoidal and transformation from Sm2Fe14C to Sm2Fe17 carbide involves other phases, such as SmFeC and a– Fe, depending on the composition of the Sm-Fe-C alloy.
11.Mao, O., Altounian, Z., and Ström-Olsen, J.O., Rev. Sci. Instrum. 68, 2438 (1997).
12.Wertheim, G. K., Butler, M. A., West, K. W. and Buchanan, N. D. E., Rev. Sci. Instrum. 11, 1369 (1974).
13.Klug, H. P. and Alexander, L. E., X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience Publication, New York, 1974).
14.Mao, O., Ström-Olsen, J.O., Altounian, Z., and Yang, J., J. Appl. Phys. 79, 4619 (1996).
15.Smith, P.A.I and McCormick, P. G., Scr. Met. Mater. 26, 485 (1992).
16.Alonso, T., Yang, H., Liu, Y., and McCormick, P. G., Appl. Phys. Lett. 60, 833 (1992).
17.Murillo, N., Gonzalez, J., Ceollada, F., Matin, V. E., Gonzalez, J. M., and Schultz, L., IEEE Trans. Magn. 29, 2857 (1993).
18.Gerasimov, K. B., Gusev, A.A., Ivanov, E. Y., and Boldyrev, V.V., J. Mater. Sci. 26, 2495 (1991).
19.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., Metall. Trans. A 21A, 2333 (1990).
20. A g-atom is used to denote a mole of atoms without distinguishing their species. For example, one mole of Sm2Fe17 has 19 units of g-atom.
21.Jayarman, A., Phys. Rev. 139, A 690 (1965).
22.Johansson, B. and Rosengren, A., Phys. Rev. B 11, 2836 (1971).
23.Altounian, Z., Guo-Hua, T., and Ström-Olsen, J.O., J. Appl. Phys. 53, 4755 (1982).
24.Egami, T., Ann. N.Y. Acad. Sci. 371, 238 (1981).
25.Buschow, K. H. J., Mater. Sci. Rep. 1, 1 (1977).
26.Gschneider, K. A. Jr, and Calderwood, F.W., Bull. Alloy Phase Diagrams 7, 421 (1971).
27.Spedding, F. H., Gschneider, K. A. Jr, and Daane, A. H., J. Am. Chem. Soc. 80, 4499 (1958).
28.Katter, M., Wecker, J., and Schultz, L., J. Appl. Phys. 70, 3188 (1991).
29.Buschow, K. H. J., in Supermagnets, Hard Magnetic Materials, edited by Long, G. J. and Grandjean, F. (Kluwer Academic Publishers, The Netherlands, 1991), p. 527.
30. SmCy is an interstitial compound of the NaCl-type structure, where Sm atoms form the fcc structure and C atoms are non-stoichiometric and occupy the octahedral interstitial sites in the fcc structure. Such nonstoichiometric interstitial compound is common between the rare earth metals and nitrogen or oxygen D. We therefore speculate that the metastable SmCy may be stabilized by absorbing oxygen or nitrogen during annealing.
31. The primitive unit cell of the GdFeC-type structure is hexagonal. However, the space group and the atomic positions in the structure are unknown.
32.Mao, O., Ph.D. Thesis, McGill University, Montreal (1997).
33.Shen, B.G., Kong, L. S., Wang, F.W., and Cao, L., Appl. Phys. Lett. 63, 2288 (1993).
34.Shen, B.G., Kong, L. S., Wang, F.W., Cao, L., and Zhan, W. S., J. Appl. Phys. 75, 6253 (1994).
35.Cheng, Z.H., Shen, B.G., Wang, F.W., Zhang, J.X., Gong, H. Y., and Zhao, J. G., J. Phys.: Condens. Matter 6, L185 (1994).
36.Cao, L., Müller, K. H., Handstein, A., Grünberger, W., Neu, V., and Schultz, L., J. Phys. D: Appl. Phys. 29, 271 (1996).
37.Ding, J. and Rosenberg, M., J. Less-Common Met. 166, 313 (1990).
38. The difference between the heating and cooling scans may be caused by the subtle change in the magnetic exchange coupling between the ultrafine grains of the 2–17 carbide and Sm2Fe14C.
39.Skomski, R., Murray, C., Brennan, S., and Coey, J. M. D., J. Appl. Phys. 73, 6940 (1993).
40.Helmholt, R.B. and Buschow, K.H.J, J. Less-Common Met. 155, 15 (1985).
41.Isnard, O., Miraglia, S., Sougeyroux, J. L., Fruchart, D., and Pannetier, J., Phys. Rev. B 45, 2920 (1992).
42.Kuhrt, C., Cerva, H., and Schultz, L., Appl. Phys. Lett. 64, 6026 (1994).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed